

Transfer of Control and Information Needs in Automated Highway System Driving: What was Old is New Again

Iowa Driving Simulator

Introduction

- Two series of seven experiments each were conducted on the lowa Driving Simulator (IDS) between 1995 and 1998 as part of Automated Highway System (AHS) research program
- Research topics included transfer of control, information needs, gap sizes, automation faults, and automation's effects on normal driving behavior
- > A dedicated automation lane was used with speeds of 60, 80, or 95 mph
- Manual traffic drove at 55 mph
- There were no barriers between lanes
- > The term string here is the same as a platoon

Conclusions

- > Drivers tended to prefer larger gaps and faster speeds
- > Drivers strongly preferred taking control of both steering and speed at the same time rather than one before the other
- > All drivers liked the AHS and saw safety benefits; but there were age and gender differences
 - In one study older drivers preferred the AHS more than younger ones; but in another study the result was reversed
- > Traffic flow and network capacity in the AHS lane may be disrupted if there is a large velocity difference between it and the adjacent lane
 - > One proposed solution is to design multiple AHS lanes with stepped up speeds
- > Drivers were able to take control after notification of automation failure but it was harder to steer at the higher speeds
- > Driving performance as measured by steering instability, velocity instability and velocity fluctuations seemed to improve after immediate, prolonged, and repeated exposure to the AHS
 - However, a control group also experienced improvement, so the root cause is likely to be complex
- > The drives were not long enough to tell if automated driving was an effective way to delay the onset of fatigue

Chris Schwarz, Daniel V. McGehee, and Timothy L. Brown The University of Iowa

Between Subject W Within Subject **Transfer of Control from Transfer of Control from AHS Driver to AHS** to Driver 24 drivers (25-34) balanced gender. 6 trials each Manual Part. Auto. **B** Transfer Velocity W Gap (Inter) Short Long W Gap (Intra) W Velocity 65 mph 80 mph 95 mph W Manual transfers were initiated by a button press Automatic transfers initiated as soon as vehicle entered AHS lane Driver would become new string (platoon) leader older drivers A time delay metric was calculated to quantify the effect of a vehicle merging into the AHS lane on the traffic flow behind it sec at 95 mph Possible time delay increased from <1 sec at 65 mph <u>ق</u> 14 to >6 sec at 95 mph There were no collisions in any trials <u>⊢</u> 12 Drivers preferred larger gaps and faster speeds Attitudes towards the AHS were uniformly positive, · 10ŀ but men strongly preferred the automated transfer over women, while women strongly preferred the Design Velocity (mph) manual transfer Designers might consider multiple AHS lanes with ⁰/_s) 14 stepped velocities since large velocity changes result ั - 12 in larger possible time delays -automated -manual Design Velocity (mph) Older Drivers 20 v/mi/ln ,18||____10 v/mi/ln| 95 95 ± 14 Design Velocity (mph) Design Velocity (mph) Design Velocity (mph) Decreasing Gap Size

Method of Transfer, **Decreasing Gap Size**, **Automation Failures**

30 drivers (25-34), 30 drivers (>=65) balanced gender. 6 trials each

12			-	
B,W	Transfer To	Manual	Part. Auto.	
B,W	Velocity	65 mph 80 n		nph
B,W	Gap (Inter)	Short		
B,W	Merge Timing	Early		
B,W	Failure	Steer	Speed	
B,W	Transfer From	Driver-control		Situa

Part 1	Part 2
Entering Automated	Decreasing Vehicle
Lane	Separations
	[[

- Response time + Lane change time was 1.86 sec for fully automated transfer – significantly faster than other two methods
- Traffic flow in AHS is estimated to be 4X greater at 65 mph than at 95 mph
- Automation Failure: Drivers who controlled steering had 4X drift across lane (2.2 ft) than those who did not (0.5 ft)
- It was harder to manually steer at 95 mph

alert

control

Transfer of Control from AHS Intra-string Gap Response Exposure Time Time Exit Driver takes

Information Needs, Extended Period of Performance

18 drivers (25-34), 18 drivers (>=65) 6 control (25-34), 6 control (>=65) : no automation balanced gender. 1 trial each

В	Gap (Intra)	0.0344 s		0.0625 s	
В	Transfer From	Steer first	Speed first		Both

- After repeated exposure drivers spent less time closing eyes and more time reading magazines
- Time to destination was more useful to drivers than current location, traffic ahead, or next exit information
- Drivers would have liked additional information such as maps, weather information, info on gas stations and food, etc.
- Driving performance improved in late collection period for both AHS and control groups, but the control group had more velocity fluctuations than the AHS group
- Drivers strongly preferred the 'both' transfer method, followed by steering first, then velocity first
- Drivers preferred a longer gap
- Older drivers preferred the AHS lane more than younger drivers

Commuting Performance

1 driver each (<25), (25-34), (35-44), (45-54), (55-64), (65-74)

balanced gender. 4 trials each

	Wednesday	Thursday	Friday	Monday	
A.M.	8 ¹ /28 ² /8 ³				
P.M.	8 ¹ /28 ² /8 ³				
¹ miles pro AUS ² miles in AUS lane ³ miles post AUS					

⁻miles pre AHS. ⁻miles in AHS lane. ⁻miles post AHS.

- Drivers immediate and prolonged performance improved after exposure to the AHS
- Average time to remove hands and feet shrunk from >12 sec to <3 sec from Wednesday to Monday

Full Auto 95 mph ong Late Both ation-cont. Part 3 Reduced

Capability