
A MULTIMEDIA, INTERACTIVE DATA VERIFICATION AND REDUCTION TOOL FOR
USE IN DRIVING SIMULATOR RESEARCH

Ginger S. Watson, Ph.D.
Branch Chief, Human Factors

&
Yiannis E. Papelis, Ph.D.

Branch Chief, Simulation Technology
&

Matthew C. Schikore
Senior Systems Programmer

National Advanced Driving Simulator, The University of Iowa
Iowa City, Iowa

Abstract

After executing driving simulator studies,
researchers are inundated with data containing
primary vehicle state variables such as velocity,
Cartesian position, and sensor inputs. These data
must be reduced into meaningful quantities that often
rely on relative measures against static or dynamic
elements of the virtual environment. For example,
following distance and time-to-collision depend not
only on primary state variables, but also on
mathematical relationships between the primary
variables and other information. Characterizing
driving, assessing human performance, and validating
simulator performance require even higher-level data.
Because the process for reducing and interpreting
driving simulator data is not standardized, it is
imperative to be able to visualize the data, both to
verify its correctness and to help researchers
understand it. Software tools in use and under
development at The University of Iowa’s National
Advanced Driving Simulator integrate online data
collection and off-line data reduction and verification
by providing interactive facilities for multi-modal
visualization and manipulation of data using a hybrid
of off-the-shelf and custom software. The linkage
between binary data and digital video allows
researchers not only to visualize the data, but also to
quickly and automatically overview video and online
written notes in correlated time.

Introduction

Driving simulators are increasingly used for
human-centered research, virtual proving ground

applications, and training. One reason that simulators
are attractive for so many applications is that they can
produce data that describe the synthetic environment
and the state of the vehicle in minute detail over
extended periods and under repeatable conditions.
Therefore, all driving simulators must collect and
process data. The processing varies according to
application, but it is generally referred to as data
reduction.

In training simulators, data reduction focuses on
computing variables that quantify the performance
mastery of the driver relative to the performance
criteria stated in the instructional objectives for each
training unit. Since training applications require
instantaneous feedback, data reduction in training
simulators is done in real-time when possible. If it
cannot be done in real-time, the amount of post-
processing is minimized to deliver results promptly
after a lesson is completed. A major benefit of online
data reduction is that it facilitates advanced
instructional technologies such as individualized
adaptive testing and performance-based remediation
and practice regimes based on a student’s need for
practice to ensure mastery of specific performance
objectives.

In research simulators, data reduction
requirements vary widely. When the research is
driver-centered, as in most human factors or medical
studies, data reduction is more specialized and may
vary from study to study. Typical processing
includes the derivation of following distance, time-to-
collision, and other variables that measure the
response or interaction of the driver with multiple
entities in the virtual environment.

In virtual proving ground applications, where a
virtual prototype is used in lieu of a physical
prototype, data reduction often focuses on vehicle
performance. Usually, performance data are provided
to other off-line engineering tools, which then

Presented at the IMAGE 2000 Conference
Scottsdale, Arizona, 10-14 July 2000.

calculate aggregate engineering-based performance
measures. Further data analysis is often necessary
when performing tasks such as predicting equipment
life based on driver inputs to a simulator.

In all simulator uses, data reduction refers to the
process by which raw data obtained by the simulator
are transformed into primary or secondary variables
that can be employed by simulator users. The process
by which reduced data are verified for correctness is
called data verification.

The work described in this paper is motivated by
the need to automate, as much as possible, the data
reduction and verification process for high-fidelity
simulators used primarily for human subject
experimentation and virtual proving ground
applications, with special emphasis on the National
Advanced Driving Simulator (NADS).

This paper is organized as follows. It begins with
an overview of the NADS device, followed by a
description of the process by which experiments are
constructed and implemented on the NADS. Next is a
detailed description of data reduction, with emphasis
on requirements and implementation. Finally, tools
that support data visualization and verification are
described, and a few examples of their usage are
provided.

NADS Overview

The NADS, shown in Fig. 1, is a high-fidelity
driving simulator. Its nine advanced technology
subsystems interact with the driver to create a highly
realistic, immersive driving environment (NHTSA,
1993). The subsystems are described here to illustrate
the complexity of the simulator environment and the
types of data that can be collected during
experimental trials.

Fig. 1 National Advanced Driving Simulator.

(1) Image Generator – The Image Generator
developed by Evans & Sutherland provides a 360-
degree field of view, including rearview mirror images.
The visual data include highway traffic control
devices (signs and signals), common intersection
types (railroad crossings, overpasses, bridge
structures, tunnels), three-dimensional objects that
vehicles encounter (animals, potholes, concrete
joints), high-density multiple-lane traffic interacting
with the driver’s vehicle, and roadway weather
environments.

(2) Motion System – The motion system
provides a 64-by-64-foot translational motion
envelope, the largest ever developed for a driving
simulator. A hexapod motion base holds a turning
platform capable of 330-degree horizontal rotation.
Four high-frequency vibration actuators are placed on
the cabs to provide road-roughness cues off each tire.

(3) Vehicle Cab System – Four fully
instrumented vehicle cabs are available in the NADS:
a Ford Taurus, a Chevrolet Malibu, a Jeep Cherokee,
and a Freightliner Century Series Day Cab. Each cab
is configured with standard and optional instruments.

(4) Control Feel System – Instrumentation and
software models provide a realistic feel of vehicle
response to the road and to driver inputs to steering,
brakes, clutch, transmission, and throttle. The control
feel system can represent automatic and manual
control characteristics such as power steering,
existing and experimental drivetrains, anti-lock braking
systems, and headway control systems.

(5) Vehicle Dynamics – High-fidelity vehicle
dynamics software accurately represents vehicle
motion and control feel conditions in response to
driver actions, road surface conditions, and vehicle
aerodynamics. Models simulate light passenger cars
and trucks, heavy trucks and buses, and off-road
wheeled and tracked vehicles. The models encompass
normal driving conditions as well as extreme
maneuvers encountered during crash avoidance
situations, including spinout and incipient rollover.

(6) Audio System – The sound system
coordinates three-dimensional audio sources with the
other sensory systems. Audio cues are provided for
vehicle operation (e.g., engine, tire, brakes, and wind),
various road surfaces, road surface changes due to
weather, high-density multiple-lane traffic, and
objects encountered during a drive (e.g., potholes,
concrete/tar joints).

(7) Scenario System – The scenario control
modules provide real-time traffic elements such as
passenger cars, motorcycles, trucks, buses, rail-based
vehicles, and pedestrians. These elements have
autonomous, reactive behaviors and provide a
complex, realistic environment for the driver.
Specialized runtime agents simulate operation of
traffic control devices, weather effects including wind

and fog, and ambient traffic. Graphical tools allow
users to develop these scenes and scenarios prior to
data collection without explicit programming. These
tools are described in the experiment development
flow section of this paper.

(8) Computer System – All computers that
control NADS operations are integrated to provide
the visual driving environment, vehicle
characteristics, roadway properties, and audio cues
that make up the virtual environment. This system
allows the user to define and monitor highly
controlled experiments.

(9) Simulator Development Module (SDM) –
The SDM is a NADS-compatible, fixed-base simulator
used for cost-effective development and testing of
subsystems prior to full-scale testing on the NADS.

A more complete description of these nine major
subsystems can be found in the National Advanced
Driving Simulator (NADS) Functional Specification
Document (NHTSA, 1993).

In addition to the nine major subsystems,
researchers can use several tools to define and test
the technical parameters of their experiments prior to
integration and testing on the SDM or NADS. The
experimental definition process is integral to
understanding how an experiment is defined and how
data are processed.

Experiment Development Flow

Understanding the experiment development flow
is important for understanding the data reduction
specification process. The experiment specification
process includes the identification of the synthetic
environment and scenarios, and data reduction is
closely linked to these components. The tools used to
develop the synthetic environment and scenarios also
support data reduction specification and
implementation.

Figure 2 illustrates the process by which an
experiment is designed for the NADS. The process is
driven by the experimenter, who uses several
interactive graphical tools to design most of the
synthetic environment. A detailed description of the
process and all data reduction and verification tools is
beyond the scope of this paper. However, a short
description of these tools will help describe how they
work with the rest of the system.

The Tile Mosaic Tool (TMT) is typically used
first. It constructs the static elements of the synthetic
environment using tile elements. A tile is a completed
rectangular area of the visual database that has been
constructed and checked for visual errors or similar
anomalies (Papelis & Bahauddin, 1998). Tiles vary in
size. A small tile may include a few hundred feet of a
residential road and all houses adjacent to the road. A

larger tile may include a whole city block, and an even
larger tile could represent a small town.

Fig. 2 Experiment development flow.

The TMT allows the user to choose tiles and
combine them to create a database to be used with the
NADS. It is equipped with features that ensure that
the final database has no visual or logical anomalies.
For example, the tool will prevent a user from putting
tiles whose edges don’t match next to each other. The
TMT tool is delivered with the NADS.

Once the TMT has been used to construct the
static elements of the synthetic environment, the
Interactive Scenario Authoring Tool (ISAT) can be
used to specify the dynamic elements of the
environment. These elements include variables such
as the traffic that will be part of the simulation and the
environmental conditions and their evolution. For
example, a user can specify that the traffic density
around the simulator driver be approximately 20
vehicles per mile and that the environment be cloudy
with low visibility and wind at 20 mph, gusting to 25
mph. The user can specify the composition of the
traffic (e.g., 20% trucks, 60% passenger vehicles, and
20% sport-utility vehicles), and can even control
specific behaviors of these vehicles, such as their
aggressiveness. In addition, the ISAT can be used to
set up special situations such as rear-end collision
avoidance scenarios by using techniques that ensure
repeatable scenarios that are largely independent of
variations in subject behavior.

The ISAT is closely integrated with the NADS
scenario control software, a set of programs that can
simulate driver behaviors at a very high fidelity. At
runtime, the scenario control software reads ISAT
output files that specify traffic parameters and driver
behaviors.

A key feature of the ISAT is a top-down view of
the synthetic environment created by the TMT. It can
be used not only to set up the simulator scenarios,
but also to help specify required data reduction. In
addition, it can be used to specify different data
collection parameters dynamically within an

experimental run. Finally, the ISAT can rehearse
scenarios by animating the simulator’s virtual
environment on a workstation. Figure 3 is a snapshot
of the ISAT. Like the TMT, the ISAT is delivered with
the NADS.

Fig. 3 Interactive Scenario Authoring Tool.

The experiment builder tool is important for data
reduction and analysis because it collects and stores
all information about an experiment. During an
experiment, the information in the experiment builder
database can be augmented so that a full audit trail of
all activities can be easily retrieved after data
collection. The experiment builder collects and stores
information such as the number of drivers that are
participating in a study and, for each driver, the
conditions of exposure on the simulator. In addition,
the experiment builder stores the names and dates of
data collection files captured on the simulator, along
with notes recorded during the drive by the
experimenter.

The user of the experiment builder uses subject
labels to refer to the participants in a simulator study.
Subject labels are arbitrary identifiers associated with
a given study that are used instead of the name of the
person who drove the simulator. This ensures
confidentiality so that there is no way for an
experimenter to associate a subject label with the
person who participated in a study. The subject labels
enable the software to identify a participant and bind
together all information obtained during his or her
participation in the study.

Once an experiment is completed, participant
labels, scenario files, log files, data collection files,
questionnaire data, and other information collected
electronically during the experiment can be extracted
from the experiment builder database. This
information can then be fed to the data reduction
tools described in the remainder of this document.

Like the tools described earlier, the experiment builder
tool is delivered with the NADS.

Data Collection

Before data can be processed, they must be
collected. Data collection is usually done in real-time
by a program that samples variables and writes a
record of them, time-stamped with the exact time of
collection. Then, at the end of the simulation, a data
file containing a series of time-stamped data records is
available for processing. Generally, records are
sampled at regular intervals (e.g., 10 to 100 times per
second) and contain the same data at each time step.
The NADS can dynamically change the contents of
the data records during collection. The ISAT can
create triggers that halt, restart, or change the record
layout used by the data collection subsystem.
Triggers issue these commands by evaluating various
dynamic conditions. Although this capability may
minimize the size of the collected data, it does not
conceptually alter the data handling process.

Data Reduction

This paper differentiates between data reduction
and data analysis. This is an important distinction
because the tools presented here focus on data
reduction rather than on data analysis. While the
tasks are inherently different, they are often confused
as one, leading to poorly designed simulators.

Data reduction is the process of deriving
meaningful performance measures from raw data
streams. Examples of typical performance measures
are average velocity, variance in lane position, mean
following distance, or reaction time. Data analysis is
the statistical analysis of the reduced variables to
determine how performance varies between
experimental treatments or conditions. An example of
data analysis results is that participants crossed the
centerline significantly more often after taking a
sedating antihistamine than after taking a non-
sedating antihistamine or a placebo (Weiler, et al.,
2000).

As another example, consider a research study
on cell phone usage where the primary endpoint is the
number of collisions between the simulator driver and
other vehicles. Any processing performed with the
goal of converting the simulator output data into the
number of collisions would fall under data reduction,
whereas any processing involving how the number of
collisions vary would fall under data analysis. Note
that this definition does not preclude a simulator from
directly outputting data that can be used for analysis.

In fact, training simulators are often designed this
way, primarily because the variables are known
beforehand. This is more difficult to define for
research simulators, however, because they are used
for a variety of applications.

The data reduction tools described in this paper
were built to simplify the data reduction process. One
goal of the NADS was to build a simulator that is
flexible and can be used for a variety of research
studies, the scope and nature of which cannot be
predicted with certainty (NHTSA, 1993). The sheer
volume of data produced by the NADS can be
invaluable as long as tools exist to help researchers
manipulate and understand these data. Although
these tools were developed for the NADS, after
working with prototypes it has become apparent that
they are also applicable to instrumented vehicles.
This paper, however, focuses on driving simulator
applications.

Based on past requests for data reduction, a two-
phase approach to data reduction has been
developed. The first phase is segmentation, the
process by which the continuous stream of data is
broken into substreams. The second phase is the
variable generation process, which performs the
calculations of actual performance variables within
each substream. Both phases are important, first
because they are inter-related, and second, because
they can significantly simplify the logistics of
managing a typical massive volume of data.

Segmentation

Segmentation is the process by which the
continuous stream of data produced by the simulator
is broken down in multiple substreams , typically
representing similar driving maneuvers required over
time within the experimental drive. For example, data
collected for 35 minutes could be broken down in two
substreams—one for the data from the beginning to
the end of the fifth minute, and another for the data
from the sixth minute to the end of the run. Segments
do not have to be contiguous, and do not have to
cover the whole data stream (Watson, 1998; Weiler et
al., 2000; Romano & Watson, 1994).

Segmentation has two main advantages. First, it
can save time when research calls for reduction and
analysis only during specific segments. For example,
if 500 bytes of data are collected 60 times a second, a
35-minute run would generate a raw data file of over
60 megabytes. Calculating complicated variables over
the entire run would be inefficient when variables
could be calculated only for the segment needed.

The second advantage is that different data
reduction measures can be applied at different
segments. For example, a researcher may be interested

in how well a subject stays in the lane on a certain
curve. Not only would it be inefficient to analyze the
entire run in this case, but a measure of lane keeping
over the entire run would not necessarily reflect poor
performance in the curve of interest.

In order to perform segmentation, one must
identify the specific points that mark the boundaries
of each segment—the start mark and the end mark .

There are many ways to determine the start and
end marks, depending on the requirements of the
experiment and the complexity of the data. One option
is to use an absolute time measured from the start of
the simulation. This would be useful if a researcher
wants to compare how the subject drives in the first
five minutes to how the subject drives after one hour.
However, this method would not be a good choice for
analyzing a subject’s performance in a specific area of
the database.

Another option is to specify the marks by
geographical location, i.e., specify when the vehicle is
in specific regions in the synthetic environment. This
method would be useful if a researcher wants to
analyze performance on a particular type of roadway
such as a straight segment or a curve.

Finally, marks can be determined based on
arbitrary conditions. For example, the start mark could
be determined when the subject’s velocity exceeds X,
and the end mark could be determined when it drops
below Y. Or, if a researcher wants to analyze a
subject’s ability to follow a vehicle, the start mark
could be when the subject’s position is within X
meters of the target vehicle, and the end mark could
be Y minutes later or at the end of road Z. This is a
more general method, and, to some degree, it is a
super-set of the other methods. It is more
complicated, but is by far the most powerful and
flexible approach.

Each method has advantages and disadvantages,
and each may yield a different number of segments for
each subject because different subjects behave
differently. With the marks defined by absolute time, a
subject might drive very fast and finish the course
before one of the segments was to begin. With the
marks defined by geographic location, the subject
could take an alternate route and not drive over the
start mark. If a start mark is defined by when the
subject’s velocity exceeds X and the subject never
does exceed X, that mark will never be set.

The segmentation and data reduction software
are capable of dealing with a different number of
segments for each subject—important when the
process is fully automated.

NADS tools allow users to select criteria for
segmentation using any of these methods. Absolute
times can be specified for marks, or marks can be
specified by geographic location using a top-down
view of the database. For more complicated arbitrary

conditions, some coding will be necessary. The user
can use LabVIEW to visually code the conditions that
must be met for each mark.

Each segment will be assigned a name for the
data reduction program to use to identify which
variables are computed in each segment.

Each of these tools will calculate the frame
number for the start mark and end mark for each
segment for each subject. These frame numbers will
be output to a file for the data reduction program to
read. The data reduction program will be able to read a
list of segments with start and end frames for each
subject, and will not have to calculate where the
segments start and end.

Variable Generation

The data reduction tool responsible for
generating variables consists of two layers: the user
interface layer and the processing layer.

The user interface layer provides dialog boxes
that can be used to select segments and, for each
segment, the type of processing to be performed and
specification for how the output data will be
formatted. A key feature of this tool is that it provides
the user with context-sensitive options that depend
on all available information about the experiment to
this point. For example, it has access to the database
produced by the experiment builder and all the data
produced by the segmentation phase. The user can
select segments either by name or by grouping them
for each simulator participant, exposure date, scenario
treatment, or other criteria. Furthermore, the tool
knows what variables mean and can reject processing
choices if they are illogical or if the necessary data are
not available. For example, the tool will not allow a
segment of data to be scheduled for lane deviation
unless the position of the simulator driver appears in
the list of available variables.

The processing layer is a library of data
processing algorithms that have been coded and
tested for correctness. These algorithms are designed
under the assumption that the input will consist of a
series of data records representing sampled
quantities. Any of the columns of input data can be
used for the calculations. As stated earlier, the user
interface layer safeguards against erroneous use of
data. The processing layer contains the code to
perform the calculations.

Operations can be performed within a column of
data or can be performed on multiple columns of data.
Operations for single columns of data include finding
the min/max, averages, simple counters for discrete
variables, pulse detectors, peak detectors, zero
crossing detectors, etc. Examples of operations that
span multiple columns include following distance

between two vehicles, time-to-collision, and number
of lane incursions.

The implementation of the processing algorithms
can be done in many forms. The processing layer of
the data reduction software uses a documented
protocol for transmitting data between the segments
and the processing modules. Any number of
programming languages or commercial tools such as
LabVIEW (1998) can be used to generate the
appropriate executable code. One advantage of using
commercial tools is the standardization of calculations
and the fact that other researchers can re-create the
same results in other simulators. If the library of
available processing algorithms is not sufficient to
cover the needs of a particular study, then additional
modules can be developed. The initial library of
processing algorithms is expected to expand as more
researchers use the tools.

The output of the data reduction algorithms
follows the same format as the input data. For certain
processing algorithms, the output is actually a series
of markers that may be used to further segment the
original data. It is also possible to use the output of
one processing algorithm as input to another, thus
creating sophisticated data reduction capabilities.
Furthermore, any number of post-processing steps
can be applied to that data to make it ready for input
into statistical packages such as SAS or SPSS.
Finally, the standardized format of the data makes it
possible for the data verification and visualization
software to intelligently display it to the user.

Data Verification & Visualization

Data verification as described here involves a
researcher checking the accuracy of the output from
various data reduction algorithms. Data verification is
necessary for two reasons. First, it is difficult to
exhaustively test software for accuracy, especially
software that is relatively new and has not been used
extensively. Second, even when mature software is
used, occasional projects are subject to strict
regulatory requirements that all computer-calculated
data be verified for accuracy.

To address the first concern, coding errors, it is
useful to review the potential outcome of erroneous
software. Generally, coding errors have one of three
outcomes. The program may fail with an exception, it
may produce erroneous results that are easy to
capture because they are dissimilar to other data of
the same type, or it may produce erroneous results
that are similar to other data of the same type. Of
these, the first is by far the easiest to detect and
correct. The second is harder to detect, primarily
because there is no apparent program termination.
However, it usually does not take long for a

researcher to detect completely unreasonable
numbers in the output. Such errors are also amenable
to automatic detection by software that checks for
numbers within a reasonable range. The third is by far
the hardest failure to deal with because the erroneous
data can easily be mistaken for correct data, and there
is no way to automatically detect it.

The data verification approach used by NADS
depends heavily on a set of tools that provides
extensive visualization capabilities for both the raw
and reduced data. The prototype of the tools
described here was developed to help detect
erroneous data produced by the third failure
described here. Consequently, it focuses on the
ability to exhaustively verify each piece of output, if
necessary. However, it has become apparent that, in
addition to helping with verification, these tools
provide a unique perspective into meaning of data. In
effect, these tools provide the researcher with a
unique understanding that would otherwise not be
available. For example, researchers have found it
extremely useful to view animations of the simulator
vehicle during the period of lane excursions because
it is easier to associate the duration of the excursion
with the actual severity of the excursion in the
simulator’s environment. In addition, by observing
the videotape of the subject’s face during these
excursions, it was apparent that many subjects were
actually falling asleep. This provided a rationale for
the high number of excursions under certain
treatments (Weiler et al., 2000).

The overwhelmingly positive feedback of
researchers led to the development of more
specialized visualization capabilities that provide
correlated views of all electronic data collected in the
course of a simulator experiment. Correlation is
important because, due to the volume of data that is
available, it can be extremely time-consuming to
manually search and identify relevant pieces of
information. The primary goal of these tools, beyond
detection of errors, is to help researchers better
understand the data, ultimately improving their ability
to interpret the numeric results of the reduced data
and results of data analysis.

The typical setup of a data verification and
visualization workstation consists of many
components. Not all components have to be available,
and the requirements depend heavily on the amount
and format of collected data. What follows is a brief
description of the system components and how they
interact with each other in achieving the goals
described earlier:

(1) Binary data vault – This component
coordinates the storage of all data involved in an
experiment. Even when using relatively high-density
media such as CD-ROMs, it is cumbersome to carry or
maintain the data on a system. In addition, data

accessibility is often an issue because of privacy
concerns. The binary data vault is a networked server
that contains the data for all experiments. The server
runs customized software that manages distribution
of files by experiment, without having to expose the
storage details of the various data files. Workstations
with the required security credentials can contact the
server and gain access to all data. They can either use
it directly on the server or temporarily download it to
the local system for processing. The data vault is
more than a file server because it provides per-
experiment authentication and responds to queries
regarding data files with only experiment and subject
labels as inputs. Typically, the server utilizes several
high-speed networking ports with a throughput that
often exceeds the speed of CD-ROMs.

(2) Primary PC – This system is a PC
workstation that runs Windows NT and hosts the
primary data reduction application and can potentially
host the ISAT. All plots, top-down map views, and
processing operations take place on this PC. Because
a large number of windows often must be open at the
same time, a PC supporting dual monitors is often
used in this role.

(3) 3D visualization PC – This is a PC system
that is equipped to display 3D images of the synthetic
environment using 3D-capable graphic cards. In
conjunction with the ISAT, this PC can display a 3D
view of the synthetic environment at a given point in
the simulation. The view is similar to what the
simulator driver would have observed. The user can
control the viewpoint independently, which allows
closer inspection of a particular scene in 3D.

(4) VCR stack – Any number of VCRs can be
used to replay videotape data that were collected
during the simulation. For the prototype of the
system, digital VCRs controllable though an RS-232
port were used. The data visualization software can
then control the VCRs, a capability that allows all
VCRs to automatically, precisely, and rapidly seek to a
specific point in the simulation.

(5) VCR monitors – One or more monitors for
displaying the output of the VCRs are provided. In
cases where the number of recorded tapes is too
large, an electronic switch is used to multiplex all
VCRs into a fewer number of monitors.

(6) Speakers and headphones – When audio is
critical in the interpretation of the data, a set of
speakers provides sound reproduction.

Figure 4 illustrates a mockup of the prototype
system. The lower sets of monitors are driven by the
primary PC, and the monitors on top are driven by the
VCRs. Three digital VCRs are shown on the left.

Typically, several such workstations can be made
available to researchers, each customized to the
specific needs of a researcher or an experiment.

Fig. 4 Data verification & visualization workstation.

Example Usage

This section illustrates how these tools can be
used by an experimenter after an experiment has taken
place. Keep in mind that, although an initial prototype
has been completed, the software is still under
development. Not all functionality described here is
available at the time of this writing.

The majority of the data-handling capabilities are
provided by the primary PC that runs the data
reduction application. Upon starting the application, a
researcher provides the name of the experiment to be
manipulated. The local software contacts the data
vault to access the various files associated with that
experiment. A full description of the files, their
availability, and their size is downloaded to the local
system. From that point on, when files are needed,
they are automatically downloaded from the data
vault and remain on the local system until the user
exits the program. Then the local files either can be
erased or remain in the system for future processing.

The capabilities of the software at this point are
completely context-driven and depend on the degree
to which processing has taken place. For example, if
data reduction has not taken place, no output data
will be available for viewing or verification. However,
any of the raw data can be selected and plotted
onscreen or onto the printer. In addition, the
segmentation menu is available. The experimenter can
select an option and perform the segmentation. The
segmentation output then becomes part of the
experiment and is uploaded to the data vault.

If segments are available, the experimenter can
then pick processing algorithms for a segment. For
example, let us assume that the experimenter selected
a time-to-collision calculation and a peak detector
using the velocity as input. Processing can now take
place. The time it takes to perform the processing can

vary greatly, but it is rarely interactive. Generally, it
takes several minutes to complete.

Once processing is finished, the data verification
window can be used to pull any of the available
variables, which now include the peaks of the velocity
and time-to-collision. The user can select any of the
velocity peaks and use them as markers. The
experimenter can then guide all VCRs to seek to the
specified point in the simulation. If a tape has not
been inserted in the VCRs, the program will prompt
the experimenter to insert the appropriately labeled
tape and then seek to the specified position. The
experimenter can request a 3D view of the simulation
at that time. The 3D visualization PC would then
initiate rendering of the synthetic environment with a
view port that is centered at the position that the
simulator driver was occupying at the time described
by the marker. Any other vehicles participating in the
scene will also be placed in their respective positions.
At that point, the experimenter can independently
vary the view port of the 3D display.

Note that in the above scenario a few
assumptions were made that must be true for a
particular experiment to support this functionality.
Recorded videotapes should support time marks and
should be labeled with unique labels that have been
inserted in the experiment database by the experiment
builder. Finally, the positions of the remaining entities
in the virtual environment should be part of the data
collection output in order for the 3D viewer to display
them.

Conclusions

This paper described the specification for a set of
tools addressing the data reduction and verification
problem for high-fidelity driving simulators. The tools
are currently focused on the NADS, but are motivated
by earlier work on high-fidelity simulation. These
tools are currently under development by The
University of Iowa. A spiral model of development is
used, with the expectation of two to three prototypes
before full functionality can be realized. An initial
prototype has been developed and was used to
analyze and visualize data earlier this year. Currently,
a second prototype is under development. The
second prototype is closely integrated with the actual
NADS tools and, once completed, will incorporate
segmentation and a larger number of processing
algorithms than the first prototype. The current
estimate for completion of the second prototype is the
first quarter of 2001.

Author Biographies

Dr. Watson received her B.S. and M.S. degrees
from Southern Illinois University in Carbondale, IL,
and her Ph.D. degree from The University of Iowa,
where she has been active in simulation research for
the past nine years. Dr. Watson received numerous
academic awards, including a fellowship from the Link
Foundation for Simulation and Training to study the
effects of simulator disorientation on performance of
drivers with varying levels of experience in different
fidelity environments. Dr. Watson's research interests
are in the areas of training, operator performance,
driver impairment, and simulator validation, fidelity,
and disorientation.

Dr. Yiannis Papelis received a B.S. degree from
Southern Illinois University at Carbondale, a M.S.
degree from Purdue University, and a Ph.D. degree
from The University of Iowa, all in Electrical and
Computer Engineering. He has been involved in
driving simulation research for the past 10 years. He
has participated in numerous research and
development projects involving driving simulators in
the US, Europe, and Asia. Dr. Papelis’s research
interests include autonomous behavior modeling and
synthetic environment modeling and simulation.

Mr. Matt Schikore carried out his undergraduate
work at The University of Iowa, where he has been
active in developing simulation technology and real-
time systems for the past six years. Mr. Schikore's
research interests are in the areas of visualization,
graphical user interfaces, and real-time simulation
technology.

References

National Highway Traffic Safety Administration
(NHTSA). (1993). National Advanced Driving
Simulator (NADS) Functional Specification
Document. Washington, DC: Author.

National Instruments Corp. (1998). LabVIEW V5.1
User’s Manual. Austin, TX: Author.

Papelis, Y., and Bahauddin, S. (1998, August). Rapid
Development of Domain Specific Correlated
Databases Using Parametrized Tiles. Paper
presented at the 1998 IMAGE Conference,
Scottsdale, AZ.

Romano, R., and Watson, G.S. (1994). Assessment of
the Capabilities of the Iowa Driving Simulator.
(Internal report, Turner-Fairbank Highway
Research Center, 6300 Georgetown Pike, McLean,
VA 22101.)

Watson, G.S. (1998). Simulator sickness adaptation in
a high-fidelity driving simulator as a function of
scenario intensity and motion cueing (Doctoral
dissertation, The University of Iowa, 1998).
Dissertation Abstracts International, 60-02A,
0398.

Weiler, J.M., Bloomfield, J.R., Woodworth, G.G.,
Grant, A.R., Layton, T.A., Brown, T.L., McKenzie,
D.R., Baker, T.W., Watson, G.S. (2000). Effects of
Fexofenadine, Diphenhydramine, and Alcohol on
Driving Performance. Annals of Internal
Medicine, 132(5), 354-363.

