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ABSTRACT 

The National Advanced Driving Simulator 
(NADS) is a high fidelity simulator developed by the 
National Highway Traffic Safety Administration 
(NHTSA) and located at the University of Iowa. The 
NADS is a tool that allows fundamental research into 
the complex interaction between driver, vehicle, and 
roadway. To facilitate that goal, the NADS has been 
designed as a shared-use facility whose operating 
model allows researchers from laboratories, 
academia, and industry to design and test simulation 
scenarios on consumer class personal computers 
before using them on the NADS. A set of software 
components were designed and implemented to allow 
this off-line specification of scenarios. These 
software components are cumulatively referred to as 
Scenario Definition and Control (SDC). This paper 
overviews the NADS SDC software and how it can 
be used for developing driving simulation scenarios 
through the use of the Interactive Scenario Authoring 
Tool (ISAT). 

SCENARIO PREPARATION FRAMEWORK 

Numerous items must be specified while 
preparing to conduct research on driving simulators. 
In general, the higher the fidelity of the simulator, the 
more issues there are that must be specified by the 
user. Aspects that typically must be specified include 
the synthetic environment, the amount and density of 
traffic, the exposures to be used for the various 
research subjects, and the nature of binary 
information that must be collected for analysis after 
data collection. To manage the amount and 
complexity of information that must be specified by 
the user, the NADS has been designed to utilize 
graphical interactive tools that allow researchers to 
perform the majority of the specification on 
consumer class personal computers. The advantages 
of this approach are many. Researchers can fine-tune 
their specification on their own time, the NADS does 
not need to be occupied while testing takes place, and 
many research projects can be under development 
concurrently. Of course, not every aspect of a 
research project can be defined this way, but the goal 
of the NADS tools is to maximize what researchers 
can do and minimize the time it takes to prepare a 
simulator configuration. 

In order to describe the operation and capabilities 
of the SDC software, it is important to define a 
process within which the software is used. At the 
same time, it is difficult to pinpoint an example 
process that is simple and easy to comprehend yet 
covers all potential models of NADS usage. We 
believe the example provided here covers a 
significant subset of NADS usage, but it should not 
be considered a limit on how the NADS can be used 
to investigate various problems. Rather, it is an 
example that is useful in explaining the nature of the 
SDC software. For example, the process does not 
indicate the potential of instrumenting new cabs or 
integrating new in-vehicle devices to current NADS 
cabs, yet any of these activities is possible. Figure 1 
illustrates the example process. 
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Figure 1 Example process. 

The Tile Mosaic Tool (TMT) is a graphical tool 
that allows the creation of the road network that will 
be used in the simulator scenarios. The pool of tiles 
refers to a set of pre-fabricated components, each 
representing a small geographical area (e.g., a city 
block or a piece of road), that can be combined by the 
TMT into a larger virtual environment to be used in 
the NADS. The output of the TMT is called a static 
virtual environment because it contains the physical 
environment (e.g., the road network, buildings, 
terrain, features) but no active elements (e.g., traffic, 
pedestrians). The static virtual environment 
comprises several distinct but correlated databases, 
each of which is used by the various NADS 
subsystems while the NADS is running. For example, 
the visual representation of the virtual environment is 
displayed by the NADS Image Generator and 
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projectors, whereas the road network information is 
used by the various driver models populating the 
virtual environment. The ISAT depends on the 
existence of a static virtual environment on which to 
build scenarios. The pool of scenario components 
represents existing libraries of scenarios that can be 
used for building new scenarios. The ISAT produces 
a scenario file, which in combination with the static 
virtual environment represents a dynamic virtual 
environment. This information is fed to the 
experiment builder, a tool that allows the 
specification of the number of participants in a study 
and the conditions to which each participant will be 
exposed. For example, let us assume that the ISAT 
produces two scenarios, S1 and S2. If an upcoming 
study will use eight subjects, then each of the 
subjects can have any number of exposures using 
either S1 or S2 and the exposure conditions. The 
Experiment Builder allows the specification of such 
associations. 

Upon completion of these associations, the 
cumulative set of various files and databases is 
transferred to the actual NADS computer systems 
where they can be used to execute the runs. After 
completion, the final output of the simulator is 
various raw data files that may include video, binary, 
or other data. Those are then fed to various post-
processing tools (referred to as data reduction) and 
the resultant reduced data can be used by the 
researchers for statistical analysis. Generally, the 
ultimate goal of this process is the generation of 
various reports, articles, publications, or other 
publicity materials. This is facilitated through a Data 
Verification and Visualization Workstation (DVVW), 
which is a hardware-software custom-developed 
product that facilitates the integration, understanding, 
and dissemination of all available information 

Note that no matter how complex the data that is 
produced in the various phases of the process, the 
goal of the data-handling tools is to hide this 
complexity from the user. 

SCENARIO AUTHORING OVERVIEW 

Scenario authoring involves the specification of 
both the static and dynamic elements of a virtual 
environment so that certain events appear to anyone 
who drives the simulator under the specific scenario 
independent of small differences in driving style or 
timing. As a simple example, consider testing a new 
in-vehicle warning device that provides various 
alarms to warn the driver of the potential of a 
collision. The researchers are interested in seeing 
how different warning signals perform as far as their 
ability to alert the driver and prevent a collision. To 
test such a device, one should be able to create 

potential collision situations. One way to do this is to 
have the subject drive along a road and through an 
intersection controlled by traffic lights while the light 
is green. As the driver nears the intersection, another 
car (car B), which is initially stopped by the red light 
on the other leg of the intersection, can begin 
moving, thus blocking the path of the subject. Let us 
consider the issues in building such a scenario. 

By far the most critical aspect of such a scenario 
is timing the motion of car B so that it provides a 
consistent time-to-collision condition for all subjects, 
something that is necessary in evaluating the collision 
avoidance device. However, additional issues must 
be considered. When was car B created? Is car B the 
same make and model for all subjects, or does it 
change? How does one ensure that when the subject 
approaches the traffic light it is green as opposed to 
yellow or red? What if different subjects travel at 
different speeds toward the intersection? 

One potential approach to building such a 
scenario in a way that addresses these concerns is to 
explicitly script everything that is dynamic about the 
virtual environment so that its timing is tied to the 
motion of the simulator driver. For example, time 0 is 
when the scenario starts, time 40 is when the driver 
reaches some fixed distance in front of the 
intersection, time 60 is when the driver's front 
bumper enters the intersection, and time 100 is when 
the driver reaches some point beyond the 
intersection. Scripting software can then determine 
the value of time based on how fast or slow the driver 
moves and then trigger every change in the virtual 
environment based on the parametric time scale. For 
example, the light will turn green at time 20, and car 
B will begin moving at time 40 and will reach the 
middle of the intersection at time 60. That way, 
everything is scripted and no matter how fast or slow 
the driver moves, the event will happen consistently. 

Such techniques are often used in part task 
simulators that typically use relatively short scenarios 
or involve few traffic elements. In addition, the 
technique is simple, easy to understand, and provides 
deterministic results. However, when considering 
such a technique for use in high fidelity simulators, 
several problems arise. In high fidelity simulators, 
scenarios are longer and generally involve multiple 
entities. Coincidentally, similar problems can appear 
in part task simulators when using larger runs with 
scenarios requiring the coordination of multiple 
scenario elements. Coordinating one or two elements 
through explicit scripting for a 5-minute scenario is 
reasonable, but coordinating 500 vehicles for a 45-
minute scenario is daunting and virtually impossible. 
Note that the 500 vehicles may not be active at the 
same time; they may represent traffic on the opposing 
lane that is not an integral part of the scenario. 
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Nevertheless, if scripting is the only tool available, it 
would have to be used for all vehicles. Another 
complication has to do with what happens after the 
event takes place. One may want to trigger different 
scenarios after the near-collision event, depending on 
the outcome of the first event. For example, if there 
was a near collision, a less severe event may need to 
take place on the next intersection, but if the subject 
veered away early enough, a more severe event may 
be necessary. Such decision-making cannot be 
programmed when scripting is the only tool. 

An alternative approach is to use intelligent 
agents that populate the simulator's virtual 
environment and behave autonomously. For example, 
autonomous driver models can be used to control the 
various vehicles in the scene. An intelligent manager 
can control the traffic lights so their timing follows a 
specific pattern. Such an approach makes it easy to 
create scenarios involving multiple entities since the 
labor-intensive specification of the individual 
behavior of every entity is eliminated. In addition, the 
length of the scenario does not overly complicate the 
development of the scenario because autonomous 
entities can be created automatically throughout the 
scenario. A significant amount of work has focused 
on techniques for implementing such scenario control 
solutions [1,2,3]. 

However, other complexities surface. For 
example, timing and coordination become harder to 
achieve. Consider the example described earlier. If a 
traffic light manager controls the state of the traffic 
lights based on the pattern, there is no guarantee that 
when the simulator driver approaches the intersection 
the light will be green. Furthermore, if vehicles are 
autonomous, there is no guarantee that car B will be 
waiting on a red light since that car may have decided 
to pick a different route earlier. Even if a car is 
waiting at the red light, various subjects will travel at 
different speeds, thus reaching that point at different 
times so the proper time for car B to block the 
intersection is not known a-priori. 

The approach used for scenario authoring in the 
NADS SDC software is a hybrid of the two 
techniques, with primary emphasis on using 
intelligent agents in conjunction with coordinators to 
ensure consistency [4]. Specifically, the SDC 
provides the user with the ability to easily create any 
number of entities that behave largely autonomously. 
In addition, the user can create coordinators that are 
invisible entities that exist in the virtual environment 
and whose responsibility is to orchestrate events by 
monitoring what happens and at key points modify 
the autonomous behavior of the remaining agents to 
achieve a pre-specified goal. Additional coordinators 
can be used to automate the generation of traffic, 
control the traffic lights, modify the environment 

conditions, and control numerous aspects of the 
simulator's operation. In addition, the ISAT allows 
the creation of purely scripted entities whose 
evolution is completely deterministic and whose 
timing is either independent or dependent on the 
simulator driver's actions. 

Deterministic objects, or Deterministic Dynamic 
Objects (DDOs) as they are referred to in the SDC, 
are objects whose behavior is pre-scripted by the 
user. Specifically, the user can select a path and 
specify the velocity of the DDO at each point in the 
path. While the scenario is running, a DDO simply 
follows its path according to the user's specification. 

Dependent DDOs, or DDDOs, are similar in that 
they follow a specific path, but their velocity adjusts 
so they reach a specific point of their path at the same 
time another entity reaches another target point. 
DDDOs allow vehicles that follow a scripted path to 
behave consistently as far as their relative position to 
another object (including the simulator driver), 
independent of the variation in the other object's 
speed. 

Autonomous Dynamic Objects (ADOs) use a 
sophisticated autonomous driver model that controls 
their motion. One can think of an ADO as a human 
driver that is driving around the virtual environment 
trying to reach its destination. An ADO will follow 
the rules of the road, including following the speed 
limit and respecting traffic lights, and exhibit most 
behaviors exhibited by real drivers.  

A unique feature of the driver model used in the 
NADS SDC, however, is the ability to have its 
default behavior modified at runtime. For example, 
an ADO can be told to follow a specific speed 
independent of the external conditions, or to change 
lanes, or the take a particular turn, etc. Such 
commands can be initiated by the researcher while 
the scenario is running through the ISAT or, most 
commonly, are issued by the various coordinators 
that can be authored a-priori. The actual paradigm 
used to represent the notion of commands in the SDC 
software is that of buttons and dials. Buttons and 
dials are conceptual models for inputs associated with 
each behavior type and operate much like physical 
push buttons and analog dials. Specifically, a button 
is an input mechanism that, when pressed, provides a 
one-time binary signal to the behavior. A dial is an 
input mechanism that, when set, provides a perpetual 
analog signal to the behavior. The actual effect of the 
delivered signal depends on the behavior itself and 
the state of the scenario element when the signal is 
received. For example, consider an imaginary button 
associated with ADOs whose name is “Turn Left.” 
Pressing the button has the effect of forcing the ADO 
to go left on the next intersection as opposed to the 
direction the ADO was originally going to take. 
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Note that buttons and dials provide a 
“suggestive” means of control, not an explicit one. 
This implies that a given behavior may decide to 
ignore a signal delivered though a button or dial if it 
cannot gracefully fulfill the request. For example, if 
the Turn Left button press came at a time when it was 
not possible to make a left turn, that request would 
not be fulfilled. At the same time, if a behavior 
defines that a given button or dial has a direct effect, 
the responsibility of reasonable behavior is passed to 
the user. Again, consider another example of a dial 
associated with an ADO named “ForceVelocity.” If 
this dial is set, the ADO will travel at that velocity, 
no matter what. However, setting the speed to a fixed 
value could cause collisions or make the car run off 
the road. 

The SDC software provides facilities that allow 
researchers to manually press buttons or set dials of 
any ADO in the simulation. However, this is not a 
reasonable approach for ensuring repeatable 
scenarios. Instead, the SDC contains additional 
virtual entities, called triggers, that can be 
programmed to perform such actions based on rules 
specified by the user. 

The trigger is an entity that is given a series of 
conditions and a series of actions. The trigger 
continuously evaluates its conditions and when they 
are all true performs the actions. Some examples of 
conditions include another object reaching a specific 
point in the road network or a traffic light reaching a 
specific state (e.g., green). Various actions are 
available, including creating a new entity, deleting an 
existing entity, modifying the cycle of the traffic 
lights, issuing behavior modification commands to a 
set of autonomous entities through buttons and dials. 

In addition to triggers, other high-level entities 
are included in the SDC software to ease certain tasks 
that are too labor intensive to perform manually. 

The traffic manager is an entity that is tasked 
with generating autonomous traffic to populate the 
area around the driver. Because of a finite limit on 
the computational resources of the simulator, it is not 
possible to simulate an arbitrary high number of 
vehicles in real-time that populate the whole virtual 
environment. Therefore, the traffic manager creates 
traffic only in the vicinity of the driver.  

A traffic source is another coordinator whose job 
is to create traffic. Unlike the traffic manager, 
however, the traffic source creates vehicles at a 
specific point in the database with a deterministic 
generation frequency. 

Finally, the traffic light manager controls the 
state of traffic lights in the scene. The user can 
program the traffic light manager to achieve just 
about any necessary timing cycles. In addition, the 
traffic light manager, in conjunction with the triggers, 

allows the linking of traffic lights to achieve 
coordinated traffic light groups. 

ISAT OVERVIEW 

The ISAT is the primary front-end tool that 
allows researchers to interact with the SDC software. 
The ISAT utilizes a Graphical User Interface (GUI) 
that follows the typical GUI conventions of the 
Windows NT® and Windows 2000 ® operating 
systems. The ISAT uses a multiple document 
interface, where a document refers to a scenario, and 
allows the editing of any number of scenarios at the 
same time. 

General tool layout 

The ISAT uses toolbars to group similar function 
buttons together. Available menu and toolbar options 
when no document is loaded are a subset of all 
available ones. When initially loaded, the user can 
load an existing scenario file or create a new scenario 
file using the respective menu to tool bar button. 
Figure 2 illustrates how the ISAT looks after a 
document is loaded. 

 
Figure 2 ISAT after loading of a scenario. 

The tool is conceptually divided into three areas: 
the toolbar and menu area, the work area, and the 
status bar. The menu bar used in the ISAT is typical 
of most GUI programs. Various tool bars are 
available immediately below the menu. The ISAT 
toolbars are organized according to logical functions 
and can be “docked” at different places, including 
outside the main tool window. The work area is 
located below the toolbars and contains a top-down 
view of the synthetic environment. This view is 
focused on the features necessary for driving, i.e., it 
displays roads, lanes, lane markings, traffic lights, 
signs, etc., but does not display forests, buildings, or 
other visual features that do not affect driving. In 
addition, various features are displayed in iconic 
form as opposed to a geometrically correct rendering. 
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The status bar on the bottom of the window provides 
multiple dynamic messages that either reflect the 
potential effects of users’ actions or provide detailed 
information about objects under the cursor. 

Tool Operating Modes The actions that the user 
can perform when using the ISAT change depending 
on the tool operating mode. There are currently three 
operating modes, each focused on a different phase of 
the scenario development process. The three 
operating modes are authoring, rehearsal, and 
monitoring. The tool first starts in authoring mode. 
While in authoring mode, the user can create new 
scenario elements and modify existing elements. The 
rehearsal mode allows execution of the current 
scenario. Executing a scenario takes place by running 
the same scenario control software that would run on 
the simulator but on the PC on which the ISAT 
executes. While the scenario executes, the ISAT 
shows the evolution of the virtual environment on the 
main window. The monitoring mode is a special 
mode that can only be used when the computer 
running the ISAT is within the NADS computer 
network. While in this mode, the ISAT connects to 
the simulator’s real-time system and obtains 
information about the position and state of all visible 
entities in the virtual environment and displays them 
in real time in the ISAT window. 

There are numerous capabilities provided by the 
ISAT, however, a detailed description of these 
capabilities is beyond the scope of this article. The 
ISAT User's Guide [5] can be consulted for more 
information. 

SCENARIO ELEMENTS IN SDC 

Common Parameters 

Developing NADS scenarios using the SDC 
software is achieved by using the ISAT to define a 
file containing all scenario elements such as ADOs, 
DDOs, and coordinators. A few key parameters can 
be associated with any scenario element and help 
coordinate the execution of scenario events. These 
parameters are the Creation Radius, the Activation 
Delay, the Lifetime, and the Scenario Object Library 
(SOL). 

Creation Radius The creation radius is a 
threshold in the distance between the scenario 
element and the position of the simulator driver. At 
runtime, the element will not be created until the 
actual distance between the position of the simulator 
driver and the scenario element is less than or equal 
to that threshold. For example, consider a scenario 
element placed at position (0,0), a creation radius of 
300, and an initial position for the simulator driver at 
location (500,0). When the scenario first starts, the 

actual distance will be 500, which is larger than 300, 
so the scenario element will not be created. What this 
means in the simulator is that there will be no visible 
entity at location (0,0). Furthermore, the 
computational load on the scenario caused by this 
element is minimal. Now consider the situation 
where the simulator driver is driving toward the 
location (0,0). The range between the scenario 
element and the driver is continuously monitored, 
and when that range gets below 300, the scenario 
element will be created. In the above example, this 
will take place when the driver reaches the location 
(300,0). The actual effect of the creation varies 
depending on the nature of the scenario element. For 
example, if the scenario element has a visual 
representation (it could be, for example, a stopped 
vehicle), then this is the time when that vehicle will 
appear in the simulator’s virtual environment. The 
creation radius only affects when a scenario element 
is created, not when it is deleted.  

The rationale for having a creation radius is 
twofold. First, it helps manage the computational 
load of the system by not creating scenario elements 
until near the time they will be used. Second, it can 
be used as a simple authoring mechanism where the 
rough timing of events is controlled by the motion of 
the simulator driver. 

Activation Delay The activation delay is the 
number of seconds between the time a scenario 
element is created and the time its behavior is 
engaged. The default value for this parameter is 0, 
indicating that an element will begin acting as its 
behavior dictates immediately upon its creation. Note 
that upon creation, the visual representation of that 
element, if any, will appear in the simulator’s virtual 
environment. 

The activation delay is often useful in 
conjunction with a creation radius. Using a larger 
than needed creation radius can help minimize the 
chance that the simulator driver will observe an 
object popping out of nowhere, and the activation 
delay can ensure that the object does not begin its 
activity until the driver is closer. For example, 
consider a DDO vehicle that is programmed to begin 
traveling at 50 mph, has a creation radius of 500, and 
has an activation delay of 3. Once the driver gets 
within 500 feet of the DDO, the DDO will be created 
and the vehicle will appear in the virtual 
environment. However, another 3 seconds have to 
pass before the DDO will begin moving. 

Lifetime The lifetime is the maximum number 
of seconds that a scenario element will exist. The 
time of existence begins when the scenario element is 
created. Once the lifetime is reached, the element is 
automatically deleted. Like the other parameters, the 
lifetime is useful in controlling the computational 
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load of a scenario. Having a finite lifetime ensures 
that a scenario element does not consume 
computational resources long after it has performed 
its task within the scenario. 

SOL Model Most scenario elements have a 
visual representation associated with them. It is 
important to realize that in general, the visual 
representation is decoupled from the behavior of a 
particular object. Behavior refers to whether the 
object is a DDO, ADO, or static object. Visual 
representation refers to what the object looks like. 
The visual representation is selected among existing 
objects contained in the SOL, a library containing 
numerous objects, their visual representation, and 
additional properties such as their audio signature or 
terrain effects. Objects in the SOL are grouped in 
categories. Objects in the same category have similar 
properties and are conceptually similar. For example, 
all objects of category “Truck” have a parameter 
“weight”; however, each object can have its own 
value for that parameter. 

Deterministic Dynamic Objects 

Deterministic Dynamic Objects (DDOs) are 
objects with no autonomous behavior that follow a 
pre-scripted path in the virtual environment. DDOs 
come in two flavors, regular and dependent. The key 
difference is in how the velocity of the object is 
controlled while it follows the pre-scripted trajectory. 
In regular DDOs, the user specifies the velocity of 
the object at control points defining the trajectory, 
whereas in a dependent DDO the velocity is 
controlled relative to the closure rate of another 
object towards a target point. 

The trajectory of a DDO is described by a series 
of user-specified control points. During scenario 
execution, the path of the DDO follows a geometric 
spline that visits all control points in order. Using a 
geometric spline has the effect of smoothing the 
motion of the DDO while it is crossing the control 
points. 

The velocity of regular DDOs is explicitly 
specified by the user at each control point. The DDO 
is guaranteed to be traveling at the specified speed 
when crossing the control point. Interpolation is used 
for determining the speed between control points.  

Because of the low computational cost, DDOs 
are convenient for manually creating large amounts 
of ambient traffic when that traffic is not near the 
driver and is not going to interact with the driver. For 
example, they can be used as traffic going over a 
bridge when the simulator driver is driving 
underneath the bridge, or vice versa. Also, in certain 
cases, DDOs can be used for sparse oncoming traffic, 
especially in divided highways. Since DDOs exhibit 

no reaction to the simulator driver or other ADOs, it 
is not recommended that they be used among other 
autonomous traffic elements. 

DDOs can also be used for animating pedestrians 
on sidewalks. By enabling the creation radius 
parameter, DDOs can “come alive” around building 
corners just as the driver approaches an intersection. 
By using the ISAT to fine-tune their timing and 
trajectories, numerous pedestrians can be added to a 
scene with minimal effort. 

Autonomous Dynamic Objects 

The ADO behavior is derived from a 
sophisticated autonomous driver model [6] that 
exhibits several driving behaviors similar to human 
drivers. Once an ADO is placed in a scenario, it will 
travel along a random path in the road network while 
following all the rules of the road and interacting 
with other ADOs and the simulator driver. The ADO 
contains an extensive set of dials that allows the 
orchestration of complicated events, despite the 
highly autonomous nature of its behavior. 

An ADO can be initialized as a random 
navigator or given a specific path to follow. When 
initialized as a random navigator, the ADO builds a 
path by using its start position as the beginning and 
adding intersections and roads. The direction taken 
when crossing an intersection is selected at random. 
When initialized with a pre-specified path, the ADO 
will follow that path and, once it reaches the path's 
end, will become a random navigator. 

The ADO will use its turn signals as necessary 
when performing lane changes and turns. In addition, 
the brake lights will turn on when an ADO 
decelerates at a rate that would require the use of 
brakes. At this point, ADOs will not use their horns, 
although they can be forced to produce sound effects 
through their dials. 

An ADO can be associated with various SOL 
objects, each of which have different physical 
properties including dimension or engine 
characteristics. In order to provide realistic 
movement when turning, braking, and accelerating, a 
multibody dynamic model is used to simulate the 
motion of the vehicle. Use of a realistic dynamic 
model also implies that objects controlled by an ADO 
cannot have supernatural performance, unlike DDOs 
whose speed is computed kinematically and will 
achieve any performance specified by the user. 

The formalism used for modeling the ADO's 
behavior is designed to accommodate concurrent 
implementation of goal seeking. In effect, within the 
model, all behaviors are active at the same time, but 
only the most important ones are used for the actual 
guiding of the vehicle. This allows the ADO to 
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seamlessly react to new circumstances by exhibiting 
the behaviors as dictated by the current conditions. 
Currently, the behaviors included in this model 
include Following, Lane Tracking, Free Drive Speed 
Control, Lane Change, and Intersection Navigation. 

Following The algorithm currently used by 
ADOs for following other vehicles is a simple 
controller that maintains some distance behind a lead 
vehicle. The actual value of this distance varies 
between ADOs or can vary from time to time within 
an ADO through a randomization function utilized to 
provide variation in traffic. Input parameters can also 
be used to modify the actual value of the target 
following distance. In addition, it can be overridden 
through buttons and dials. 

The actual controller responsible for maintaining 
the distance is tuned fairly aggressively so that 
vehicles will react quickly when their desired 
distance is disturbed. This is to ensure that vehicles 
don't collide with each other or with the simulator 
driver. However, it is still possible to have collisions 
if vehicles are forced to drastically change their speed 
or if their path is obstructed in a way that makes 
stopping in time impossible. At the same time, the 
aggressiveness of the controller often leads to low-
frequency oscillations when the speed of a car within 
traffic changes for whatever reason. To some degree, 
this oscillation is similar to spring-like oscillations 
observed in real traffic patterns. 

Lane Tracking The lane tracking behavior is 
responsible for steering control. The ADO will track 
the current lane using a simple steering controller that 
is tuned to minimize lane incursions during sharp 
turns. In general, the ADO will track the center of the 
lane plus or minus a small random perturbation for 
variability. The controller attempts to keep the whole 
vehicle body within lane boundaries at all times. 

Speed Control The speed at which an ADO 
travels through the network when not following 
another vehicle is controlled by many factors, 
including the type of road, the posted speed limit, the 
road's curvature, and external commands through 
buttons and dials. In general, if no speed limit is 
posted, the ADO first computes an estimate of the 
current speed limit based on the type of road. If a 
speed limit sign is passed, the ADO will obey the 
speed limit and remember it until the next 
intersection. Finally, the ADO will use the curvature 
of the road to compute an upper bound on its 
velocity. The upper bound is computed by calculating 
the maximum speed around the curve that would 
expose the vehicle to no more than a threshold lateral 
acceleration. The actual threshold varies depending 
on the input parameters, but in general, it cannot 
exceed the traction limit of the dynamic model. A 
typical value is 0.25 Gs. 

Once all speeds have been computed (i.e., road 
default, speed limit, curvature), the lowest is used to 
guide the vehicle after taking into account the setting 
of the TargetVelocity Dial.  Figure 3 illustrates the 
block diagram used for calculating speed control. The 
illustration is focused on the Free Driving Speed 
Control logic, but does include the logic used to 
combine velocity control signals from other 
behaviors and external inputs. 

Speed Limit
Estimator

Curvature
Induced Speed

Limiter

Driver
Characteristics

Free Driving Speed Control

Random
Pertrubation

+ Min

Road
Network

Database

TargetVelocity
Dial

ForceVelocity
Dial

Min

Other
Behaviors

 
Figure 3 Diagram used to calculate speed control. 

Lane Change The ADO looks for opportunities 
to perform lane change maneuvers. Currently, an 
ADO changes lanes for various reasons. It changes 
lanes to stay on its path. It changes lanes to the left to 
if it encounters a slower vehicle in front of it. An 
ADO changes lanes to the right as a means of 
traveling on the rightmost lane of multilane roads 
when no other conditions necessitate traveling on a 
lane other than the rightmost. When on a highway, an 
ADO will change lanes to the left to yield to merging 
traffic. An ADO will change lanes in response to 
advisory traffic signs warning of an upcoming lane 
closing. Finally, an ADO changes lanes due to an 
external command from the user. This command 
forces the ADO to change lanes regardless of its 
current path. 

An ADO is relatively intelligent about how it 
performs lane changes. For example, if an ADO 
needs to turn right at the next intersection and there is 
a slow-moving vehicle in front of it, it will only 
change lanes to pass if there is enough distance 
before the intersection to move back into the right 
lane and make the right turn at the intersection. In 
addition, an appropriate gap must exist between 
vehicles on the target lane before a lane change 
maneuver is initiated. The lane change behavior acts 
dynamically; i.e., it continuously re-evaluates the 
current situation, and if conditions change enough, a 
lane change maneuver can be aborted. 

Intersection Navigation The intersection 
navigation logic used by the ADO is designed to 
accommodate most types of intersections 
encountered in actual road networks. The general 
principle used for intersection navigation is to first 
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identify the intersection corridor that will be used to 
traverse the intersection and then find all vehicles 
whose corridors intersect the ADO’s corridors. 
Having found the other conflicting vehicles, the ADO 
uses the rules of the road, including any traffic signs 
or lights, to prioritize all vehicles. At any given time, 
all vehicles other than the one with the highest 
priority will stop at the designated hold offset, 
typically indicated by a solid white line. Once the 
highest priority vehicle has cleared the part of the 
corridor that intersects the other corridors, the vehicle 
that was second in priority becomes the highest 
priority and proceeds. 

It often happens that according to the rules of the 
road, two vehicles have similar priority; i.e., there is 
no clear differentiation on which one should go first. 
When this happens, a random selection is made 
among the vehicles. This coordination requires 
communication between vehicles to ensure that all 
have a consistent view of who has the right of way. 
The problem is that given N ADOs trying to 
negotiate an intersection, this approach requires N2 
messages. To avoid this explosion in communication, 
the intersection navigation logic uses a single 
controller implementing the same decision-making 
process to explicitly assign priorities to all ADOs. 
The single controller approach reduces the messages 
to 2*N, (N messages for the ADOs to communicate 
their path and another N messages for the controller 
to send back their priorities), thus minimizing the 
need for vehicles to communicate with each other. 
Although this is a centralized approach, the algorithm 
used still depends on simulating a distributed 
decision-making typical of real life. 

Another challenging complication in intersection 
navigation is integrating the simulator driver in the 
traffic. Whereas ADOs can coordinate with each 
other by declaring their intended path and obeying 
the controller's priority assignment, the simulator 
driver does neither. To address this problem, there is 
a specialized coordinator, called the Driver Mirror, 
whose responsibility is to look at simulator driver 
placement and turn signals in order to predict the 
driver's path, which then is used by the remaining 
traffic to determine priorities. For priority 
assignment, because there is no way to tell the driver 
what to do, the ADOs have explicit logic to deal with 
the simulator driver. This involves computing the 
priority of the driver using a method similar to other 
ADOs, but then acting somewhat different: 
� When the driver is the highest priority 

vehicle, ADOs yield to it as usual. 
� When the driver has equal priority as other 

ADOs, the driver always wins the toss. 

� When the driver has lower priority than 
other ADOs, the highest priority ADO 
proceeds as usual but monitors the driver to 
detect motion; if motion is detected, 
priorities are re-evaluated using the updated 
placement of the vehicles. 

The potential for deadlocks always exists, and 
the central controller can detect deadlocks and 
resolve them. However, to ensure that there are no 
deadlocks between the scenario cars and the driver, 
as in the case where ADOs think the driver is the 
highest priority but the driver thinks that another 
ADO should proceed, the ADOs will use a time-out 
value for how long to wait. If the time-out expires, 
the ADOs get new priorities that have the driver at a 
lower priority level. 

To ensure that there are no collisions if the driver 
decides to move after an ADO has begun crossing the 
intersection, in addition to monitoring the driver's 
motion, each ADO uses a forward-looking cone to 
detect vehicles immediately ahead of it. If the driver 
appears in that cone, the vehicle stops until the cone 
area clears. 

The intersection navigation logic runs 
concurrently with other behaviors, and if other 
behaviors dictate a slower speed, then that speed is 
selected. That way, when multiple vehicles are 
queued on an intersection, the follow logic of all 
vehicles but the first would override any intersection 
navigation commands, thus stopping the vehicle 
behind the queue leader. 

Buttons & Dials In addition to the default 
autonomous behaviors, the ADOs support these 
buttons & dials to help coordinate scenarios: 

ChangeLaneLeft – Causes the ADO to change 
lanes to the left. 

ChangeLaneRight – Causes the ADO to change 
lanes to the right. 

TurnLeft – Causes the ADO to turn to the 
leftmost road at the next intersection. 

TurnRight – Causes the ADO to turn to the 
rightmost road at the next intersection. 

TargetVelocity – Causes the ADO to try and 
achieve this velocity whenever possible. The ADO 
ignores speed limits but does not ignore road 
curvatures. 

ForcedVelocity – Causes the ADO to blindly 
achieve this velocity as quickly as possible. The 
ADO ignores speed limits and road curvatures. 

AudioState – When set, the ADO continuously 
generates the specified sound(s). The sound will only 
be audible on the NADS. 

VisualState – When set, the ADO continuously 
activates the specified light(s). 
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The Traffic Manager 

The Traffic Manager (TM) is responsible for 
generating ambient traffic around the simulator 
driver. In this context, ambient traffic consists of one 
or more ADOs that are created and deleted by the 
TM at runtime to ensure that a pre-specified amount 
of traffic is surrounding the simulator driver at all 
times. The composition of traffic, the traffic density, 
and other parameters are grouped into Traffic 
Manager Input Sets (TMIS). To provide maximum 
flexibility, multiple TMIS can be specified and the 
active one can be dynamically selected at runtime 
through triggers. This allows different ambient traffic 
properties at different places of the simulation. 

Conceptually, the operation of the TM is rather 
simple. At runtime, the TM counts the number of 
vehicles around the driver and computes the traffic 
density. If the density is lower than specified, the TM 
creates a few ADOs to increase the density. If the 
density is higher than specified, the TM deletes a few 
ADOs to lower the density. If the density is roughly 
equal to the value specified, no action is performed. 

In practice, the actual operation of the TM is 
somewhat more complicated than described above. 
This complication is caused by two factors, namely 
the need to hide the creation or deletion of ADOs 
from the simulator driver and the limited number of 
ADOs that can be simulated at each time step due to 
the computational load on the scenario control 
processor. Both factors necessitate a more 
complicated algorithm that uses additional user-
specified parameters whose purpose is to help 
minimize the computational load, minimize visibility 
of creations and deletions, and maximize the 
observability of any traffic elements by the simulator 
driver once they are created. 

Following are the parameters specified in 
conjunction with the traffic manager. Creation 
Distance indicates how far from the driver new 
ADOs are created. Deletion Distance is a threshold 
distance that, once crossed by an ADO, would trigger 
its deletion. The desired density is a range between 
the Minimum Density and the Maximum Density 
parameters. To minimize load on the system, the TM 
runs at a regular interval, whose duration is specified 
by the Run Frequency parameter. Finally, to avoid 
overloading the scenario processor, the user can 
specify an absolute limit on the number of ADOs 
produced by the traffic manager. 

The Traffic Light Manager 

The Traffic Light Manager (TLM) is responsible 
for controlling the sequencing of traffic lights in the 
virtual environment. Note that by default, traffic 

lights are set to the off state. The TLM must be 
activated and timing should be defined for all 
intersections whose traffic lights need to be operating 
during the simulation. 

Timing is defined for groups of related traffic. 
These groups are called Coordinated Light Groups 
(CLGs). Currently the grouping of lights into CLGs 
is done automatically by the software that generates 
the road network and cannot be modified by the user. 
In general, all traffic lights on an intersection are 
grouped together in a CLG. 

Within each CLG, timing is specified by 
providing an arbitrary number of states and then 
specifying the color of each traffic light during that 
state. The duration of each state is also specified. At 
runtime, the TLM implements a simple state machine 
that visits all states in the order they were specified. 
In general, the TLM utilizes a small, but not 
negligible, part of the computing capacity of the 
scenario computer. However, when the number of 
traffic lights is very large, the I/O time necessary to 
communicate the state of each traffic light to the IG 
can get quite large. As a result, the TLM provides the 
ability to load balance the system by only operating 
traffic lights that are within a certain range of the 
simulator driver. Use of this load balancing is almost 
mandatory when a scene contains more than one 
hundred traffic lights. 

Triggers 

Triggers are flexible coordinators that allow the 
development of complicated scenarios. Simply put, 
triggers are predicate-action pairs. The predicates 
dictate conditions that, once satisfied, cause the 
actions to take place. At runtime, triggers 
continuously evaluate their predicate conditions and, 
if satisfied, perform the actions. 

There are several types of triggers. Each type is 
characterized by the type of conditions that can cause 
it to fire, but the types of actions that can be 
performed upon firing are consistent across all trigger 
types. A variety of parameters associated with a 
trigger provide increased flexibility in creating 
scenarios. These parameters include a fire delay 
duration and a de-bounce duration. The fire delay 
parameter introduces a delay between the satisfaction 
of the trigger predicates and the actual firing. The de-
bounce duration limits the minimum amount of 
elapsed time between successive trigger firings. The 
following are the types of triggers available in SDC. 

Global Time Trigger This trigger fires after a 
fixed amount of time has elapsed since the beginning 
of the simulation. 

Road Pad Trigger This trigger fires when 
scenario elements travel over a specified section of 
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the road network. It can be programmed to filter the 
elements that can trigger it by specifying a list of 
names, a list of SOL categories, and similar criteria. 

Time To Arrival Trigger This trigger fires 
when a moving scenario element is within a certain 
time of arriving at a target point. The primary goal of 
this trigger is to allow authoring of near-collision 
events where the time to collision must be precisely 
controllable independently of the driver's actions. 

Traffic Light Trigger This trigger fires when a 
traffic light reaches a specified state. For example, 
the trigger can be programmed to fire when a traffic 
light becomes red. 

Geometry Position Trigger This trigger fires 
when any traffic element enters an arbitrary 
geometrical region. Conceptually, this trigger is 
similar to the road pad trigger, but the trigger 
polygonal region can be on or off the road network. 
This allows elements that move outside the road 
network, such as train carts and pedestrians, to also 
trigger scenario events. 

Trigger Actions 

The flexibility of building scenarios in the SDC 
is largely controlled by the capabilities of triggers. 
All trigger types have the ability to perform any 
number of the following actions upon firing: 
� Create a new scenario element 
� Delete an existing scenario element 
� Set the dial or press the button of a scenario 

element 
� Modify the traffic manager parameters 
� Play an audio special effect 
� Cause a simulated failure to the NADS 

vehicle subsystems (i.e., tire failures, brake 
failures, engine noises etc.) 

� Force a coordinated traffic light group into a 
specific state 

� Log time-stamped data in the NADS 
collection file 

� Terminate the simulation 
� Pre-position the motion base to optimize 

performance when the upcoming maneuver 
is known 

� Adjust the tuning parameters of the motion 
system to better match the upcoming road 

 

Additional actions can easily be incorporated in 
the system. An example of an action that is currently 
integrated into the system is the ability of triggers to 
initiate phone calls to an arbitrary number. This 
capability requires some minimal hardware to be 
interfaced with the simulator. The goal of this trigger 
action is to help investigate the effect of various types 
of cell-phones on driver distraction. 

CONCLUSION 

This paper provided an overview of the SDC 
software for the NADS. The goal of the SDC 
software is to provide a powerful environment for 
creating realistic yet repeatable scenarios that 
facilitate the conduct of research at the NADS. 
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