
Papelis 1

SCENARIO DEFINITION AND CONTROL FOR THE NATIONAL ADVANCED DRIVING SIMULATOR

Yiannis Papelis, Omar Ahmad, and Matt Schikore
The University of Iowa, National Advanced Driving Simulator, USA
Paper Number: 346

ABSTRACT

The National Advanced Driving Simulator
(NADS) is a high fidelity simulator developed by the
National Highway Traffic Safety Administration
(NHTSA) and located at the University of Iowa. The
NADS is a tool that allows fundamental research into
the complex interaction between driver, vehicle, and
roadway. To facilitate that goal, the NADS has been
designed as a shared-use facility whose operating
model allows researchers from laboratories,
academia, and industry to design and test simulation
scenarios on consumer class personal computers
before using them on the NADS. A set of software
components were designed and implemented to allow
this off-line specification of scenarios. These
software components are cumulatively referred to as
Scenario Definition and Control (SDC). This paper
overviews the NADS SDC software and how it can
be used for developing driving simulation scenarios
through the use of the Interactive Scenario Authoring
Tool (ISAT).

SCENARIO PREPARATION FRAMEWORK

Numerous items must be specified while
preparing to conduct research on driving simulators.
In general, the higher the fidelity of the simulator, the
more issues there are that must be specified by the
user. Aspects that typically must be specified include
the synthetic environment, the amount and density of
traffic, the exposures to be used for the various
research subjects, and the nature of binary
information that must be collected for analysis after
data collection. To manage the amount and
complexity of information that must be specified by
the user, the NADS has been designed to utilize
graphical interactive tools that allow researchers to
perform the majority of the specification on
consumer class personal computers. The advantages
of this approach are many. Researchers can fine-tune
their specification on their own time, the NADS does
not need to be occupied while testing takes place, and
many research projects can be under development
concurrently. Of course, not every aspect of a
research project can be defined this way, but the goal
of the NADS tools is to maximize what researchers
can do and minimize the time it takes to prepare a
simulator configuration.

In order to describe the operation and capabilities
of the SDC software, it is important to define a
process within which the software is used. At the
same time, it is difficult to pinpoint an example
process that is simple and easy to comprehend yet
covers all potential models of NADS usage. We
believe the example provided here covers a
significant subset of NADS usage, but it should not
be considered a limit on how the NADS can be used
to investigate various problems. Rather, it is an
example that is useful in explaining the nature of the
SDC software. For example, the process does not
indicate the potential of instrumenting new cabs or
integrating new in-vehicle devices to current NADS
cabs, yet any of these activities is possible. Figure 1
illustrates the example process.

TMT

Pool of tiles Pool of Scenario
Components

ISAT Experiment
Builder

Static
VE

Dynamic
VE

Dynamic
Experiment

Raw
data

Reduced
data

Data
Reduction

Data Verification & Visualization Workstation

Reports Publications Publicity MaterialsArticles
Figure 1 Example process.

The Tile Mosaic Tool (TMT) is a graphical tool
that allows the creation of the road network that will
be used in the simulator scenarios. The pool of tiles
refers to a set of pre-fabricated components, each
representing a small geographical area (e.g., a city
block or a piece of road), that can be combined by the
TMT into a larger virtual environment to be used in
the NADS. The output of the TMT is called a static
virtual environment because it contains the physical
environment (e.g., the road network, buildings,
terrain, features) but no active elements (e.g., traffic,
pedestrians). The static virtual environment
comprises several distinct but correlated databases,
each of which is used by the various NADS
subsystems while the NADS is running. For example,
the visual representation of the virtual environment is
displayed by the NADS Image Generator and

Papelis 2

projectors, whereas the road network information is
used by the various driver models populating the
virtual environment. The ISAT depends on the
existence of a static virtual environment on which to
build scenarios. The pool of scenario components
represents existing libraries of scenarios that can be
used for building new scenarios. The ISAT produces
a scenario file, which in combination with the static
virtual environment represents a dynamic virtual
environment. This information is fed to the
experiment builder, a tool that allows the
specification of the number of participants in a study
and the conditions to which each participant will be
exposed. For example, let us assume that the ISAT
produces two scenarios, S1 and S2. If an upcoming
study will use eight subjects, then each of the
subjects can have any number of exposures using
either S1 or S2 and the exposure conditions. The
Experiment Builder allows the specification of such
associations.

Upon completion of these associations, the
cumulative set of various files and databases is
transferred to the actual NADS computer systems
where they can be used to execute the runs. After
completion, the final output of the simulator is
various raw data files that may include video, binary,
or other data. Those are then fed to various post-
processing tools (referred to as data reduction) and
the resultant reduced data can be used by the
researchers for statistical analysis. Generally, the
ultimate goal of this process is the generation of
various reports, articles, publications, or other
publicity materials. This is facilitated through a Data
Verification and Visualization Workstation (DVVW),
which is a hardware-software custom-developed
product that facilitates the integration, understanding,
and dissemination of all available information

Note that no matter how complex the data that is
produced in the various phases of the process, the
goal of the data-handling tools is to hide this
complexity from the user.

SCENARIO AUTHORING OVERVIEW

Scenario authoring involves the specification of
both the static and dynamic elements of a virtual
environment so that certain events appear to anyone
who drives the simulator under the specific scenario
independent of small differences in driving style or
timing. As a simple example, consider testing a new
in-vehicle warning device that provides various
alarms to warn the driver of the potential of a
collision. The researchers are interested in seeing
how different warning signals perform as far as their
ability to alert the driver and prevent a collision. To
test such a device, one should be able to create

potential collision situations. One way to do this is to
have the subject drive along a road and through an
intersection controlled by traffic lights while the light
is green. As the driver nears the intersection, another
car (car B), which is initially stopped by the red light
on the other leg of the intersection, can begin
moving, thus blocking the path of the subject. Let us
consider the issues in building such a scenario.

By far the most critical aspect of such a scenario
is timing the motion of car B so that it provides a
consistent time-to-collision condition for all subjects,
something that is necessary in evaluating the collision
avoidance device. However, additional issues must
be considered. When was car B created? Is car B the
same make and model for all subjects, or does it
change? How does one ensure that when the subject
approaches the traffic light it is green as opposed to
yellow or red? What if different subjects travel at
different speeds toward the intersection?

One potential approach to building such a
scenario in a way that addresses these concerns is to
explicitly script everything that is dynamic about the
virtual environment so that its timing is tied to the
motion of the simulator driver. For example, time 0 is
when the scenario starts, time 40 is when the driver
reaches some fixed distance in front of the
intersection, time 60 is when the driver's front
bumper enters the intersection, and time 100 is when
the driver reaches some point beyond the
intersection. Scripting software can then determine
the value of time based on how fast or slow the driver
moves and then trigger every change in the virtual
environment based on the parametric time scale. For
example, the light will turn green at time 20, and car
B will begin moving at time 40 and will reach the
middle of the intersection at time 60. That way,
everything is scripted and no matter how fast or slow
the driver moves, the event will happen consistently.

Such techniques are often used in part task
simulators that typically use relatively short scenarios
or involve few traffic elements. In addition, the
technique is simple, easy to understand, and provides
deterministic results. However, when considering
such a technique for use in high fidelity simulators,
several problems arise. In high fidelity simulators,
scenarios are longer and generally involve multiple
entities. Coincidentally, similar problems can appear
in part task simulators when using larger runs with
scenarios requiring the coordination of multiple
scenario elements. Coordinating one or two elements
through explicit scripting for a 5-minute scenario is
reasonable, but coordinating 500 vehicles for a 45-
minute scenario is daunting and virtually impossible.
Note that the 500 vehicles may not be active at the
same time; they may represent traffic on the opposing
lane that is not an integral part of the scenario.

Papelis 3

Nevertheless, if scripting is the only tool available, it
would have to be used for all vehicles. Another
complication has to do with what happens after the
event takes place. One may want to trigger different
scenarios after the near-collision event, depending on
the outcome of the first event. For example, if there
was a near collision, a less severe event may need to
take place on the next intersection, but if the subject
veered away early enough, a more severe event may
be necessary. Such decision-making cannot be
programmed when scripting is the only tool.

An alternative approach is to use intelligent
agents that populate the simulator's virtual
environment and behave autonomously. For example,
autonomous driver models can be used to control the
various vehicles in the scene. An intelligent manager
can control the traffic lights so their timing follows a
specific pattern. Such an approach makes it easy to
create scenarios involving multiple entities since the
labor-intensive specification of the individual
behavior of every entity is eliminated. In addition, the
length of the scenario does not overly complicate the
development of the scenario because autonomous
entities can be created automatically throughout the
scenario. A significant amount of work has focused
on techniques for implementing such scenario control
solutions [1,2,3].

However, other complexities surface. For
example, timing and coordination become harder to
achieve. Consider the example described earlier. If a
traffic light manager controls the state of the traffic
lights based on the pattern, there is no guarantee that
when the simulator driver approaches the intersection
the light will be green. Furthermore, if vehicles are
autonomous, there is no guarantee that car B will be
waiting on a red light since that car may have decided
to pick a different route earlier. Even if a car is
waiting at the red light, various subjects will travel at
different speeds, thus reaching that point at different
times so the proper time for car B to block the
intersection is not known a-priori.

The approach used for scenario authoring in the
NADS SDC software is a hybrid of the two
techniques, with primary emphasis on using
intelligent agents in conjunction with coordinators to
ensure consistency [4]. Specifically, the SDC
provides the user with the ability to easily create any
number of entities that behave largely autonomously.
In addition, the user can create coordinators that are
invisible entities that exist in the virtual environment
and whose responsibility is to orchestrate events by
monitoring what happens and at key points modify
the autonomous behavior of the remaining agents to
achieve a pre-specified goal. Additional coordinators
can be used to automate the generation of traffic,
control the traffic lights, modify the environment

conditions, and control numerous aspects of the
simulator's operation. In addition, the ISAT allows
the creation of purely scripted entities whose
evolution is completely deterministic and whose
timing is either independent or dependent on the
simulator driver's actions.

Deterministic objects, or Deterministic Dynamic
Objects (DDOs) as they are referred to in the SDC,
are objects whose behavior is pre-scripted by the
user. Specifically, the user can select a path and
specify the velocity of the DDO at each point in the
path. While the scenario is running, a DDO simply
follows its path according to the user's specification.

Dependent DDOs, or DDDOs, are similar in that
they follow a specific path, but their velocity adjusts
so they reach a specific point of their path at the same
time another entity reaches another target point.
DDDOs allow vehicles that follow a scripted path to
behave consistently as far as their relative position to
another object (including the simulator driver),
independent of the variation in the other object's
speed.

Autonomous Dynamic Objects (ADOs) use a
sophisticated autonomous driver model that controls
their motion. One can think of an ADO as a human
driver that is driving around the virtual environment
trying to reach its destination. An ADO will follow
the rules of the road, including following the speed
limit and respecting traffic lights, and exhibit most
behaviors exhibited by real drivers.

A unique feature of the driver model used in the
NADS SDC, however, is the ability to have its
default behavior modified at runtime. For example,
an ADO can be told to follow a specific speed
independent of the external conditions, or to change
lanes, or the take a particular turn, etc. Such
commands can be initiated by the researcher while
the scenario is running through the ISAT or, most
commonly, are issued by the various coordinators
that can be authored a-priori. The actual paradigm
used to represent the notion of commands in the SDC
software is that of buttons and dials. Buttons and
dials are conceptual models for inputs associated with
each behavior type and operate much like physical
push buttons and analog dials. Specifically, a button
is an input mechanism that, when pressed, provides a
one-time binary signal to the behavior. A dial is an
input mechanism that, when set, provides a perpetual
analog signal to the behavior. The actual effect of the
delivered signal depends on the behavior itself and
the state of the scenario element when the signal is
received. For example, consider an imaginary button
associated with ADOs whose name is “Turn Left.”
Pressing the button has the effect of forcing the ADO
to go left on the next intersection as opposed to the
direction the ADO was originally going to take.

Papelis 4

Note that buttons and dials provide a
“suggestive” means of control, not an explicit one.
This implies that a given behavior may decide to
ignore a signal delivered though a button or dial if it
cannot gracefully fulfill the request. For example, if
the Turn Left button press came at a time when it was
not possible to make a left turn, that request would
not be fulfilled. At the same time, if a behavior
defines that a given button or dial has a direct effect,
the responsibility of reasonable behavior is passed to
the user. Again, consider another example of a dial
associated with an ADO named “ForceVelocity.” If
this dial is set, the ADO will travel at that velocity,
no matter what. However, setting the speed to a fixed
value could cause collisions or make the car run off
the road.

The SDC software provides facilities that allow
researchers to manually press buttons or set dials of
any ADO in the simulation. However, this is not a
reasonable approach for ensuring repeatable
scenarios. Instead, the SDC contains additional
virtual entities, called triggers, that can be
programmed to perform such actions based on rules
specified by the user.

The trigger is an entity that is given a series of
conditions and a series of actions. The trigger
continuously evaluates its conditions and when they
are all true performs the actions. Some examples of
conditions include another object reaching a specific
point in the road network or a traffic light reaching a
specific state (e.g., green). Various actions are
available, including creating a new entity, deleting an
existing entity, modifying the cycle of the traffic
lights, issuing behavior modification commands to a
set of autonomous entities through buttons and dials.

In addition to triggers, other high-level entities
are included in the SDC software to ease certain tasks
that are too labor intensive to perform manually.

The traffic manager is an entity that is tasked
with generating autonomous traffic to populate the
area around the driver. Because of a finite limit on
the computational resources of the simulator, it is not
possible to simulate an arbitrary high number of
vehicles in real-time that populate the whole virtual
environment. Therefore, the traffic manager creates
traffic only in the vicinity of the driver.

A traffic source is another coordinator whose job
is to create traffic. Unlike the traffic manager,
however, the traffic source creates vehicles at a
specific point in the database with a deterministic
generation frequency.

Finally, the traffic light manager controls the
state of traffic lights in the scene. The user can
program the traffic light manager to achieve just
about any necessary timing cycles. In addition, the
traffic light manager, in conjunction with the triggers,

allows the linking of traffic lights to achieve
coordinated traffic light groups.

ISAT OVERVIEW

The ISAT is the primary front-end tool that
allows researchers to interact with the SDC software.
The ISAT utilizes a Graphical User Interface (GUI)
that follows the typical GUI conventions of the
Windows NT® and Windows 2000 ® operating
systems. The ISAT uses a multiple document
interface, where a document refers to a scenario, and
allows the editing of any number of scenarios at the
same time.

General tool layout

The ISAT uses toolbars to group similar function
buttons together. Available menu and toolbar options
when no document is loaded are a subset of all
available ones. When initially loaded, the user can
load an existing scenario file or create a new scenario
file using the respective menu to tool bar button.
Figure 2 illustrates how the ISAT looks after a
document is loaded.

Figure 2 ISAT after loading of a scenario.

The tool is conceptually divided into three areas:
the toolbar and menu area, the work area, and the
status bar. The menu bar used in the ISAT is typical
of most GUI programs. Various tool bars are
available immediately below the menu. The ISAT
toolbars are organized according to logical functions
and can be “docked” at different places, including
outside the main tool window. The work area is
located below the toolbars and contains a top-down
view of the synthetic environment. This view is
focused on the features necessary for driving, i.e., it
displays roads, lanes, lane markings, traffic lights,
signs, etc., but does not display forests, buildings, or
other visual features that do not affect driving. In
addition, various features are displayed in iconic
form as opposed to a geometrically correct rendering.

Papelis 5

The status bar on the bottom of the window provides
multiple dynamic messages that either reflect the
potential effects of users’ actions or provide detailed
information about objects under the cursor.

Tool Operating Modes The actions that the user
can perform when using the ISAT change depending
on the tool operating mode. There are currently three
operating modes, each focused on a different phase of
the scenario development process. The three
operating modes are authoring, rehearsal, and
monitoring. The tool first starts in authoring mode.
While in authoring mode, the user can create new
scenario elements and modify existing elements. The
rehearsal mode allows execution of the current
scenario. Executing a scenario takes place by running
the same scenario control software that would run on
the simulator but on the PC on which the ISAT
executes. While the scenario executes, the ISAT
shows the evolution of the virtual environment on the
main window. The monitoring mode is a special
mode that can only be used when the computer
running the ISAT is within the NADS computer
network. While in this mode, the ISAT connects to
the simulator’s real-time system and obtains
information about the position and state of all visible
entities in the virtual environment and displays them
in real time in the ISAT window.

There are numerous capabilities provided by the
ISAT, however, a detailed description of these
capabilities is beyond the scope of this article. The
ISAT User's Guide [5] can be consulted for more
information.

SCENARIO ELEMENTS IN SDC

Common Parameters

Developing NADS scenarios using the SDC
software is achieved by using the ISAT to define a
file containing all scenario elements such as ADOs,
DDOs, and coordinators. A few key parameters can
be associated with any scenario element and help
coordinate the execution of scenario events. These
parameters are the Creation Radius, the Activation
Delay, the Lifetime, and the Scenario Object Library
(SOL).

Creation Radius The creation radius is a
threshold in the distance between the scenario
element and the position of the simulator driver. At
runtime, the element will not be created until the
actual distance between the position of the simulator
driver and the scenario element is less than or equal
to that threshold. For example, consider a scenario
element placed at position (0,0), a creation radius of
300, and an initial position for the simulator driver at
location (500,0). When the scenario first starts, the

actual distance will be 500, which is larger than 300,
so the scenario element will not be created. What this
means in the simulator is that there will be no visible
entity at location (0,0). Furthermore, the
computational load on the scenario caused by this
element is minimal. Now consider the situation
where the simulator driver is driving toward the
location (0,0). The range between the scenario
element and the driver is continuously monitored,
and when that range gets below 300, the scenario
element will be created. In the above example, this
will take place when the driver reaches the location
(300,0). The actual effect of the creation varies
depending on the nature of the scenario element. For
example, if the scenario element has a visual
representation (it could be, for example, a stopped
vehicle), then this is the time when that vehicle will
appear in the simulator’s virtual environment. The
creation radius only affects when a scenario element
is created, not when it is deleted.

The rationale for having a creation radius is
twofold. First, it helps manage the computational
load of the system by not creating scenario elements
until near the time they will be used. Second, it can
be used as a simple authoring mechanism where the
rough timing of events is controlled by the motion of
the simulator driver.

Activation Delay The activation delay is the
number of seconds between the time a scenario
element is created and the time its behavior is
engaged. The default value for this parameter is 0,
indicating that an element will begin acting as its
behavior dictates immediately upon its creation. Note
that upon creation, the visual representation of that
element, if any, will appear in the simulator’s virtual
environment.

The activation delay is often useful in
conjunction with a creation radius. Using a larger
than needed creation radius can help minimize the
chance that the simulator driver will observe an
object popping out of nowhere, and the activation
delay can ensure that the object does not begin its
activity until the driver is closer. For example,
consider a DDO vehicle that is programmed to begin
traveling at 50 mph, has a creation radius of 500, and
has an activation delay of 3. Once the driver gets
within 500 feet of the DDO, the DDO will be created
and the vehicle will appear in the virtual
environment. However, another 3 seconds have to
pass before the DDO will begin moving.

Lifetime The lifetime is the maximum number
of seconds that a scenario element will exist. The
time of existence begins when the scenario element is
created. Once the lifetime is reached, the element is
automatically deleted. Like the other parameters, the
lifetime is useful in controlling the computational

Papelis 6

load of a scenario. Having a finite lifetime ensures
that a scenario element does not consume
computational resources long after it has performed
its task within the scenario.

SOL Model Most scenario elements have a
visual representation associated with them. It is
important to realize that in general, the visual
representation is decoupled from the behavior of a
particular object. Behavior refers to whether the
object is a DDO, ADO, or static object. Visual
representation refers to what the object looks like.
The visual representation is selected among existing
objects contained in the SOL, a library containing
numerous objects, their visual representation, and
additional properties such as their audio signature or
terrain effects. Objects in the SOL are grouped in
categories. Objects in the same category have similar
properties and are conceptually similar. For example,
all objects of category “Truck” have a parameter
“weight”; however, each object can have its own
value for that parameter.

Deterministic Dynamic Objects

Deterministic Dynamic Objects (DDOs) are
objects with no autonomous behavior that follow a
pre-scripted path in the virtual environment. DDOs
come in two flavors, regular and dependent. The key
difference is in how the velocity of the object is
controlled while it follows the pre-scripted trajectory.
In regular DDOs, the user specifies the velocity of
the object at control points defining the trajectory,
whereas in a dependent DDO the velocity is
controlled relative to the closure rate of another
object towards a target point.

The trajectory of a DDO is described by a series
of user-specified control points. During scenario
execution, the path of the DDO follows a geometric
spline that visits all control points in order. Using a
geometric spline has the effect of smoothing the
motion of the DDO while it is crossing the control
points.

The velocity of regular DDOs is explicitly
specified by the user at each control point. The DDO
is guaranteed to be traveling at the specified speed
when crossing the control point. Interpolation is used
for determining the speed between control points.

Because of the low computational cost, DDOs
are convenient for manually creating large amounts
of ambient traffic when that traffic is not near the
driver and is not going to interact with the driver. For
example, they can be used as traffic going over a
bridge when the simulator driver is driving
underneath the bridge, or vice versa. Also, in certain
cases, DDOs can be used for sparse oncoming traffic,
especially in divided highways. Since DDOs exhibit

no reaction to the simulator driver or other ADOs, it
is not recommended that they be used among other
autonomous traffic elements.

DDOs can also be used for animating pedestrians
on sidewalks. By enabling the creation radius
parameter, DDOs can “come alive” around building
corners just as the driver approaches an intersection.
By using the ISAT to fine-tune their timing and
trajectories, numerous pedestrians can be added to a
scene with minimal effort.

Autonomous Dynamic Objects

The ADO behavior is derived from a
sophisticated autonomous driver model [6] that
exhibits several driving behaviors similar to human
drivers. Once an ADO is placed in a scenario, it will
travel along a random path in the road network while
following all the rules of the road and interacting
with other ADOs and the simulator driver. The ADO
contains an extensive set of dials that allows the
orchestration of complicated events, despite the
highly autonomous nature of its behavior.

An ADO can be initialized as a random
navigator or given a specific path to follow. When
initialized as a random navigator, the ADO builds a
path by using its start position as the beginning and
adding intersections and roads. The direction taken
when crossing an intersection is selected at random.
When initialized with a pre-specified path, the ADO
will follow that path and, once it reaches the path's
end, will become a random navigator.

The ADO will use its turn signals as necessary
when performing lane changes and turns. In addition,
the brake lights will turn on when an ADO
decelerates at a rate that would require the use of
brakes. At this point, ADOs will not use their horns,
although they can be forced to produce sound effects
through their dials.

An ADO can be associated with various SOL
objects, each of which have different physical
properties including dimension or engine
characteristics. In order to provide realistic
movement when turning, braking, and accelerating, a
multibody dynamic model is used to simulate the
motion of the vehicle. Use of a realistic dynamic
model also implies that objects controlled by an ADO
cannot have supernatural performance, unlike DDOs
whose speed is computed kinematically and will
achieve any performance specified by the user.

The formalism used for modeling the ADO's
behavior is designed to accommodate concurrent
implementation of goal seeking. In effect, within the
model, all behaviors are active at the same time, but
only the most important ones are used for the actual
guiding of the vehicle. This allows the ADO to

Papelis 7

seamlessly react to new circumstances by exhibiting
the behaviors as dictated by the current conditions.
Currently, the behaviors included in this model
include Following, Lane Tracking, Free Drive Speed
Control, Lane Change, and Intersection Navigation.

Following The algorithm currently used by
ADOs for following other vehicles is a simple
controller that maintains some distance behind a lead
vehicle. The actual value of this distance varies
between ADOs or can vary from time to time within
an ADO through a randomization function utilized to
provide variation in traffic. Input parameters can also
be used to modify the actual value of the target
following distance. In addition, it can be overridden
through buttons and dials.

The actual controller responsible for maintaining
the distance is tuned fairly aggressively so that
vehicles will react quickly when their desired
distance is disturbed. This is to ensure that vehicles
don't collide with each other or with the simulator
driver. However, it is still possible to have collisions
if vehicles are forced to drastically change their speed
or if their path is obstructed in a way that makes
stopping in time impossible. At the same time, the
aggressiveness of the controller often leads to low-
frequency oscillations when the speed of a car within
traffic changes for whatever reason. To some degree,
this oscillation is similar to spring-like oscillations
observed in real traffic patterns.

Lane Tracking The lane tracking behavior is
responsible for steering control. The ADO will track
the current lane using a simple steering controller that
is tuned to minimize lane incursions during sharp
turns. In general, the ADO will track the center of the
lane plus or minus a small random perturbation for
variability. The controller attempts to keep the whole
vehicle body within lane boundaries at all times.

Speed Control The speed at which an ADO
travels through the network when not following
another vehicle is controlled by many factors,
including the type of road, the posted speed limit, the
road's curvature, and external commands through
buttons and dials. In general, if no speed limit is
posted, the ADO first computes an estimate of the
current speed limit based on the type of road. If a
speed limit sign is passed, the ADO will obey the
speed limit and remember it until the next
intersection. Finally, the ADO will use the curvature
of the road to compute an upper bound on its
velocity. The upper bound is computed by calculating
the maximum speed around the curve that would
expose the vehicle to no more than a threshold lateral
acceleration. The actual threshold varies depending
on the input parameters, but in general, it cannot
exceed the traction limit of the dynamic model. A
typical value is 0.25 Gs.

Once all speeds have been computed (i.e., road
default, speed limit, curvature), the lowest is used to
guide the vehicle after taking into account the setting
of the TargetVelocity Dial. Figure 3 illustrates the
block diagram used for calculating speed control. The
illustration is focused on the Free Driving Speed
Control logic, but does include the logic used to
combine velocity control signals from other
behaviors and external inputs.

Speed Limit
Estimator

Curvature
Induced Speed

Limiter

Driver
Characteristics

Free Driving Speed Control

Random
Pertrubation

+ Min

Road
Network

Database

TargetVelocity
Dial

ForceVelocity
Dial

Min

Other
Behaviors

Figure 3 Diagram used to calculate speed control.

Lane Change The ADO looks for opportunities
to perform lane change maneuvers. Currently, an
ADO changes lanes for various reasons. It changes
lanes to stay on its path. It changes lanes to the left to
if it encounters a slower vehicle in front of it. An
ADO changes lanes to the right as a means of
traveling on the rightmost lane of multilane roads
when no other conditions necessitate traveling on a
lane other than the rightmost. When on a highway, an
ADO will change lanes to the left to yield to merging
traffic. An ADO will change lanes in response to
advisory traffic signs warning of an upcoming lane
closing. Finally, an ADO changes lanes due to an
external command from the user. This command
forces the ADO to change lanes regardless of its
current path.

An ADO is relatively intelligent about how it
performs lane changes. For example, if an ADO
needs to turn right at the next intersection and there is
a slow-moving vehicle in front of it, it will only
change lanes to pass if there is enough distance
before the intersection to move back into the right
lane and make the right turn at the intersection. In
addition, an appropriate gap must exist between
vehicles on the target lane before a lane change
maneuver is initiated. The lane change behavior acts
dynamically; i.e., it continuously re-evaluates the
current situation, and if conditions change enough, a
lane change maneuver can be aborted.

Intersection Navigation The intersection
navigation logic used by the ADO is designed to
accommodate most types of intersections
encountered in actual road networks. The general
principle used for intersection navigation is to first

Papelis 8

identify the intersection corridor that will be used to
traverse the intersection and then find all vehicles
whose corridors intersect the ADO’s corridors.
Having found the other conflicting vehicles, the ADO
uses the rules of the road, including any traffic signs
or lights, to prioritize all vehicles. At any given time,
all vehicles other than the one with the highest
priority will stop at the designated hold offset,
typically indicated by a solid white line. Once the
highest priority vehicle has cleared the part of the
corridor that intersects the other corridors, the vehicle
that was second in priority becomes the highest
priority and proceeds.

It often happens that according to the rules of the
road, two vehicles have similar priority; i.e., there is
no clear differentiation on which one should go first.
When this happens, a random selection is made
among the vehicles. This coordination requires
communication between vehicles to ensure that all
have a consistent view of who has the right of way.
The problem is that given N ADOs trying to
negotiate an intersection, this approach requires N2
messages. To avoid this explosion in communication,
the intersection navigation logic uses a single
controller implementing the same decision-making
process to explicitly assign priorities to all ADOs.
The single controller approach reduces the messages
to 2*N, (N messages for the ADOs to communicate
their path and another N messages for the controller
to send back their priorities), thus minimizing the
need for vehicles to communicate with each other.
Although this is a centralized approach, the algorithm
used still depends on simulating a distributed
decision-making typical of real life.

Another challenging complication in intersection
navigation is integrating the simulator driver in the
traffic. Whereas ADOs can coordinate with each
other by declaring their intended path and obeying
the controller's priority assignment, the simulator
driver does neither. To address this problem, there is
a specialized coordinator, called the Driver Mirror,
whose responsibility is to look at simulator driver
placement and turn signals in order to predict the
driver's path, which then is used by the remaining
traffic to determine priorities. For priority
assignment, because there is no way to tell the driver
what to do, the ADOs have explicit logic to deal with
the simulator driver. This involves computing the
priority of the driver using a method similar to other
ADOs, but then acting somewhat different:
� When the driver is the highest priority

vehicle, ADOs yield to it as usual.
� When the driver has equal priority as other

ADOs, the driver always wins the toss.

� When the driver has lower priority than
other ADOs, the highest priority ADO
proceeds as usual but monitors the driver to
detect motion; if motion is detected,
priorities are re-evaluated using the updated
placement of the vehicles.

The potential for deadlocks always exists, and
the central controller can detect deadlocks and
resolve them. However, to ensure that there are no
deadlocks between the scenario cars and the driver,
as in the case where ADOs think the driver is the
highest priority but the driver thinks that another
ADO should proceed, the ADOs will use a time-out
value for how long to wait. If the time-out expires,
the ADOs get new priorities that have the driver at a
lower priority level.

To ensure that there are no collisions if the driver
decides to move after an ADO has begun crossing the
intersection, in addition to monitoring the driver's
motion, each ADO uses a forward-looking cone to
detect vehicles immediately ahead of it. If the driver
appears in that cone, the vehicle stops until the cone
area clears.

The intersection navigation logic runs
concurrently with other behaviors, and if other
behaviors dictate a slower speed, then that speed is
selected. That way, when multiple vehicles are
queued on an intersection, the follow logic of all
vehicles but the first would override any intersection
navigation commands, thus stopping the vehicle
behind the queue leader.

Buttons & Dials In addition to the default
autonomous behaviors, the ADOs support these
buttons & dials to help coordinate scenarios:

ChangeLaneLeft – Causes the ADO to change
lanes to the left.

ChangeLaneRight – Causes the ADO to change
lanes to the right.

TurnLeft – Causes the ADO to turn to the
leftmost road at the next intersection.

TurnRight – Causes the ADO to turn to the
rightmost road at the next intersection.

TargetVelocity – Causes the ADO to try and
achieve this velocity whenever possible. The ADO
ignores speed limits but does not ignore road
curvatures.

ForcedVelocity – Causes the ADO to blindly
achieve this velocity as quickly as possible. The
ADO ignores speed limits and road curvatures.

AudioState – When set, the ADO continuously
generates the specified sound(s). The sound will only
be audible on the NADS.

VisualState – When set, the ADO continuously
activates the specified light(s).

Papelis 9

The Traffic Manager

The Traffic Manager (TM) is responsible for
generating ambient traffic around the simulator
driver. In this context, ambient traffic consists of one
or more ADOs that are created and deleted by the
TM at runtime to ensure that a pre-specified amount
of traffic is surrounding the simulator driver at all
times. The composition of traffic, the traffic density,
and other parameters are grouped into Traffic
Manager Input Sets (TMIS). To provide maximum
flexibility, multiple TMIS can be specified and the
active one can be dynamically selected at runtime
through triggers. This allows different ambient traffic
properties at different places of the simulation.

Conceptually, the operation of the TM is rather
simple. At runtime, the TM counts the number of
vehicles around the driver and computes the traffic
density. If the density is lower than specified, the TM
creates a few ADOs to increase the density. If the
density is higher than specified, the TM deletes a few
ADOs to lower the density. If the density is roughly
equal to the value specified, no action is performed.

In practice, the actual operation of the TM is
somewhat more complicated than described above.
This complication is caused by two factors, namely
the need to hide the creation or deletion of ADOs
from the simulator driver and the limited number of
ADOs that can be simulated at each time step due to
the computational load on the scenario control
processor. Both factors necessitate a more
complicated algorithm that uses additional user-
specified parameters whose purpose is to help
minimize the computational load, minimize visibility
of creations and deletions, and maximize the
observability of any traffic elements by the simulator
driver once they are created.

Following are the parameters specified in
conjunction with the traffic manager. Creation
Distance indicates how far from the driver new
ADOs are created. Deletion Distance is a threshold
distance that, once crossed by an ADO, would trigger
its deletion. The desired density is a range between
the Minimum Density and the Maximum Density
parameters. To minimize load on the system, the TM
runs at a regular interval, whose duration is specified
by the Run Frequency parameter. Finally, to avoid
overloading the scenario processor, the user can
specify an absolute limit on the number of ADOs
produced by the traffic manager.

The Traffic Light Manager

The Traffic Light Manager (TLM) is responsible
for controlling the sequencing of traffic lights in the
virtual environment. Note that by default, traffic

lights are set to the off state. The TLM must be
activated and timing should be defined for all
intersections whose traffic lights need to be operating
during the simulation.

Timing is defined for groups of related traffic.
These groups are called Coordinated Light Groups
(CLGs). Currently the grouping of lights into CLGs
is done automatically by the software that generates
the road network and cannot be modified by the user.
In general, all traffic lights on an intersection are
grouped together in a CLG.

Within each CLG, timing is specified by
providing an arbitrary number of states and then
specifying the color of each traffic light during that
state. The duration of each state is also specified. At
runtime, the TLM implements a simple state machine
that visits all states in the order they were specified.
In general, the TLM utilizes a small, but not
negligible, part of the computing capacity of the
scenario computer. However, when the number of
traffic lights is very large, the I/O time necessary to
communicate the state of each traffic light to the IG
can get quite large. As a result, the TLM provides the
ability to load balance the system by only operating
traffic lights that are within a certain range of the
simulator driver. Use of this load balancing is almost
mandatory when a scene contains more than one
hundred traffic lights.

Triggers

Triggers are flexible coordinators that allow the
development of complicated scenarios. Simply put,
triggers are predicate-action pairs. The predicates
dictate conditions that, once satisfied, cause the
actions to take place. At runtime, triggers
continuously evaluate their predicate conditions and,
if satisfied, perform the actions.

There are several types of triggers. Each type is
characterized by the type of conditions that can cause
it to fire, but the types of actions that can be
performed upon firing are consistent across all trigger
types. A variety of parameters associated with a
trigger provide increased flexibility in creating
scenarios. These parameters include a fire delay
duration and a de-bounce duration. The fire delay
parameter introduces a delay between the satisfaction
of the trigger predicates and the actual firing. The de-
bounce duration limits the minimum amount of
elapsed time between successive trigger firings. The
following are the types of triggers available in SDC.

Global Time Trigger This trigger fires after a
fixed amount of time has elapsed since the beginning
of the simulation.

Road Pad Trigger This trigger fires when
scenario elements travel over a specified section of

Papelis 10

the road network. It can be programmed to filter the
elements that can trigger it by specifying a list of
names, a list of SOL categories, and similar criteria.

Time To Arrival Trigger This trigger fires
when a moving scenario element is within a certain
time of arriving at a target point. The primary goal of
this trigger is to allow authoring of near-collision
events where the time to collision must be precisely
controllable independently of the driver's actions.

Traffic Light Trigger This trigger fires when a
traffic light reaches a specified state. For example,
the trigger can be programmed to fire when a traffic
light becomes red.

Geometry Position Trigger This trigger fires
when any traffic element enters an arbitrary
geometrical region. Conceptually, this trigger is
similar to the road pad trigger, but the trigger
polygonal region can be on or off the road network.
This allows elements that move outside the road
network, such as train carts and pedestrians, to also
trigger scenario events.

Trigger Actions

The flexibility of building scenarios in the SDC
is largely controlled by the capabilities of triggers.
All trigger types have the ability to perform any
number of the following actions upon firing:
� Create a new scenario element
� Delete an existing scenario element
� Set the dial or press the button of a scenario

element
� Modify the traffic manager parameters
� Play an audio special effect
� Cause a simulated failure to the NADS

vehicle subsystems (i.e., tire failures, brake
failures, engine noises etc.)

� Force a coordinated traffic light group into a
specific state

� Log time-stamped data in the NADS
collection file

� Terminate the simulation
� Pre-position the motion base to optimize

performance when the upcoming maneuver
is known

� Adjust the tuning parameters of the motion
system to better match the upcoming road

Additional actions can easily be incorporated in
the system. An example of an action that is currently
integrated into the system is the ability of triggers to
initiate phone calls to an arbitrary number. This
capability requires some minimal hardware to be
interfaced with the simulator. The goal of this trigger
action is to help investigate the effect of various types
of cell-phones on driver distraction.

CONCLUSION

This paper provided an overview of the SDC
software for the NADS. The goal of the SDC
software is to provide a powerful environment for
creating realistic yet repeatable scenarios that
facilitate the conduct of research at the NADS.

REFERENCES

[1] P. C. Van Wolffelaar, W. Van Winsum,
“Traffic Modeling and Driving Simulation – An
Integrated Approach,” Proceedings of the Driving
Simulation Conference, 1995, Sophi Antipolis,
France, September 12-13, 1995, pp. 236-244.

[2] J. G. Kuhl, D. Evans, Y. Papelis, R. Romano,
G. Watson, “The Iowa Driving Simulator: An
Immersive Environment for Driving-Related
Research and Development,” IEEE Computer 28(7),
pp. 35-41.

[3] M. H. Strobl, J. H. Bernasch, J. P. Lowenau,
“Generation of Complex traffic Scenarios in the
BMW Driving Simulator,” Proceedings of the
Driving Simulation Conference, 2000, Paris, France,
September 6-8, 2000, pp.245-256.

[4] J. Cremer, J. Kearney, Y. Papelis, “HCSM: A
Framework for Behavior and Scenario Control in
Virtual Environments,” ACM Trans. Modeling Comp.
Simul. 5(3), pp. 242-267.

[5] National Advanced Driving Simulator, ISAT
User’s Guide and Functional Reference (NADS
Report N01-004), Iowa City, IA: NADS, 2001.

[6] Y. Papelis, O. Ahmad, “A Comprehensive
Microscopic Autonomous Driver Model for Use in
High-Fidelity Driving Simulation Environments,”
Proceedings of the Annual Transportation Research
Board Meeting, Washington, DC: TRB, 2001 (to
appear).

	A
	ABSTRACT
	SCENARIO PREPARATION FRAMEWORK
	SCENARIO AUTHORING OVERVIEW
	ISAT OVERVIEW
	General tool layout

	SCENARIO ELEMENTS IN SDC
	Common Parameters
	Creation Radius The creation radius is a threshold in the distance between the scenario element and the position of the simulator driver. At runtime, the element will not be created until the actual distance between the position of the simulator driver a
	Activation Delay The activation delay is the number of seconds between the time a scenario element is created and the time its behavior is engaged. The default value for this parameter is 0, indicating that an element will begin acting as its behavior di
	Lifetime The lifetime is the maximum number of seconds that a scenario element will exist. The time of existence begins when the scenario element is created. Once the lifetime is reached, the element is automatically deleted. Like the other parameters, t
	SOL Model Most scenario elements have a visual representation associated with them. It is important to realize that in general, the visual representation is decoupled from the behavior of a particular object. Behavior refers to whether the object is a DD

	Deterministic Dynamic Objects
	Autonomous Dynamic Objects
	Following The algorithm currently used by ADOs for following other vehicles is a simple controller that maintains some distance behind a lead vehicle. The actual value of this distance varies between ADOs or can vary from time to time within an ADO throu
	The actual controller responsible for maintaining the distance is tuned fairly aggressively so that vehicles will react quickly when their desired distance is disturbed. This is to ensure that vehicles don't collide with each other or with the simulator
	Lane Tracking The lane tracking behavior is responsible for steering control. The ADO will track the current lane using a simple steering controller that is tuned to minimize lane incursions during sharp turns. In general, the ADO will track the center o
	Speed Control The speed at which an ADO travels through the network when not following another vehicle is controlled by many factors, including the type of road, the posted speed limit, the road's curvature, and external commands through buttons and dial
	Lane Change The ADO looks for opportunities to perform lane change maneuvers. Currently, an ADO changes lanes for various reasons. It changes lanes to stay on its path. It changes lanes to the left to if it encounters a slower vehicle in front of it. An
	Intersection Navigation The intersection navigation logic used by the ADO is designed to accommodate most types of intersections encountered in actual road networks. The general principle used for intersection navigation is to first identify the intersec

	The Traffic Manager
	The Traffic Light Manager
	Triggers
	Trigger Actions

	CONCLUSION
	REFERENCES

