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Abstract 
High-fidelity driving simulators immerse a driver in a 
highly realistic virtual environment for the purpose of 
studying human driving behavior in a realistic yet safe 
setting. Many factors contribute to the immersive 
experience, but when the subject under study requires 
interaction with other vehicles, it is important that the 
virtual environment includes a microscopic traffic 
simulation model. Such a model often consists of 
populating the road network with one or more 
autonomous driver models. The more individual types 
of maneuvers an autonomous driver model exhibits, the 
more realistic it appears to the simulator driver. This 
paper focuses on the design of a specific behavior that is 
responsible for implementing lane change maneuvers. 
This behavior, which is part of a larger autonomous 
driver model, is important because it is necessary for 
building more complicated behaviors such as yielding, 
route planning, and merging. This behavior is unique in 
that it accommodates several conditions simultaneously 
and is designed to work with an arbitrary vehicle 
dynamic model. To address the variability in the 
physical response of different vehicle models, it uses an 
off-line learning technique that exercises the dynamic 
model and builds lookup tables that encompass the 
experience of the driver model.  

1. Introduction 
Autonomous vehicles are an important component of 
the real-time scenario definition and control software at 
the National Advanced Driving Simulator (NADS). The 
experiments conducted at NADS require a realistic 
driving experience for the simulator driver. The quality 
of the driving experience relies in part on the amount of 
information available from the virtual environment and 
the sophistication of the objects modeled inside it. In 
that sense, a realistic traffic simulation is essential. In 
the NADS software model, traffic is made up of 
individual autonomous vehicles that interact with each 
other and with the simulator driver. Each vehicle 
utilizes a complete autonomous driver model that 
dictates its behavior. This paradigm is often referred to 
as microscopic traffic simulation. 
The number and realism of behaviors exhibited by 
autonomous vehicles determine how realistic the traffic 
in a simulation appears. The autonomous vehicles in the 
NADS software accurately exhibit several behaviors. 
This paper focuses on one such behavior—the lane 
change maneuver. It is challenging to model because the 
simulator driver can easily distinguish a realistic lane 
change maneuver from an unrealistic one. Performing a 

realistic lane change maneuver requires accurate 
information from the virtual environment about the 
layout of the road network and the physical capabilities 
of the vehicle, in addition to various constraints that 
dictate the urgency with which a lane change maneuver 
is implemented. 
This paper begins with a brief description of the 
autonomous vehicle model used in the NADS. It then 
briefly describes the formalism used to model the driver 
behaviors. The core of the paper focuses on describing 
our work in determining the conditions that trigger lane 
changes. In addition, the paper describes the learning 
process through which any vehicle model can be 
controlled to perform realistic lane change maneuvers in 
a manner independent of the controlled vehicle's 
physical response. 

2. Issues in Autonomous Driver Modeling 
A key design approach to the autonomous driver model 
is the separation between driver behavior and the 
physical vehicle model. This approach has several 
benefits. It allows the use of the same driver model with 
a wide variety of physical models that represent 
different vehicles such as passenger cars, sport utility 
vehicles, trucks, emergency vehicles, etc. Although cars 
and trucks are physically quite different, they use 
essentially the same behavioral logic to move around 
the road network and interact with other objects. 
Another reason for this separation is the need to provide 
realistic motion control for the vehicle controlled by the 
autonomous driver model. It has been our experience 
that when using simple equations of motion for 
controlling the motion of a vehicle, the visual aspect of 
the result is not pleasing and, in fact, looks rather 
artificial. For example, a braking car shows no pitching, 
there is no roll when turning, and slow-speed turns look 
unnatural. Using special effect equations to simulate 
these cues is often as complicated as developing 
physics-based models, so we decided to use a multi-
body physics-based model for the actual generation of 
motion for each vehicle. The result is natural-looking 
motion under various conditions. However, there is one 
disadvantage to using this approach. The response of 
such a vehicle is non-linear both in terms of velocity 
and steering, and it is therefore necessary to develop 
velocity and steering controllers. Such controllers can 
be tuned to perform acceptably even with modest 
variation in the baseline characteristics of vehicles (e.g., 
weight, horsepower). However, one has to decide at 
what level to separate the physical control of the vehicle 
from the higher level driver model. For example, 
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consider the high-level decision to stop at a particular 
point on the road. One approach may be that the 
dynamic model simply accepts gas pedal displacement 
commands, in which case the responsibility of physical 
control lies with the driver model. Another approach 
may be to design the dynamic model with a built-in 
controller that accepts a desired acceleration and then 
calculates the gas pedal displacement. This somewhat 
separates the physical control from the driver model; 
however, the driver model needs to be aware of the 
controller and vehicle capabilities to ensure that it 
provides achievable commands. An example of the 
problems that occur when the driver model is not aware 
of the physical model capabilities is a situation in which 
the driver model waits too long to provide a braking 
command and the target point is overshot. Clearly, there 
are many ways to address this issue, all of which have 
advantages and disadvantages. 
Our approach to building an integrated driver model is 
to remove most of the low-level control responsibilities 
from the driver model and place them with controllers 
that are tightly integrated with the dynamic model. That 
way, controllers can be tuned to the dynamic model, and 
unlike the driver model that may run at a lower 
frequency, the controllers can run at the same frequency 
as the dynamic model. The input to these controllers 
consists of velocity and steering commands. A steering 
command is delivered as a target point, and velocity 
commands are delivered using two distinct 
formulations. The first formulation provides a desired 
velocity and a distance by which this velocity has to be 
achieved, and the second formulation provides another 
object and a desired following distance to that object. 
The steering command is equivalent to providing a 
steering angle; however, providing a target point is 
simpler from the driver model's standpoint because it 
makes lane-tracking straightforward. Similarly, even 
though the target velocity and distance formulation is 
equivalent to providing acceleration, it is easier to use 
when the goal is stopping at a fixed point on the road. 
Our driver model still has to cope with the capabilities 
of different dynamic models. Such information is 
critical in numerous decision-making situations 
involved in driving. For example, consider the situation 
illustrated in Figure 1. Vehicle A is waiting to cross the 
intersection while traffic (Vehicles B and C) is crossing 
on the perpendicular road. There are numerous models 
that describe human behavior in such gap-acceptance 
situations, which we can consult to select an appropriate 
gap. However, such gap-acceptance figures are relative 
safety margins, not absolute numbers for the spacing 
between vehicles. 
For example, one can make a simple imaginary 
experiment where the same human driver is placed in 
the situation depicted in Figure 1 but with two different 
types of vehicle—first with a typical passenger car and 
then with a slower and larger truck. Clearly, some gaps 
that the driver will decide to take when driving the car 
would be let go when driving the slower truck. The 
reason for this difference is that the performance of the 
vehicle is an integral part of the driver's decision-
making process.  

 

Veh A

Veh B Veh C

 

Figure 1 – Gap acceptance example. 
One can find numerous similar situations when the same 
driver acts somewhat differently depending on the type 
of vehicle they are controlling, even when their high-
level behavior is the same. Lane-tracking, for example, 
is a characteristic of the driver, not the car. If a driver 
likes to stay on the right side of a lane, he or she will 
apply any control inputs necessary to drive that way. In 
a different car, the control inputs would be slightly 
different, but the vehicle placement would be similar.  
In effect, different drivers adapt, or learn how to apply 
their desired driving characteristics to any car they 
drive. This observation led us to design a driver model 
that can also adapt, or learn how to control a vehicle, by 
exercising a vehicle, observing the response, storing that 
information, and then using that information while 
making decisions during driving. In this context, the 
learned information involves the ability to predict the 
non-linear response of the vehicle dynamics model. 
Note that if the dynamic model was a simple linear 
model, there would be no need for learning in the sense 
that a few closed-form equations could be used to 
quickly predict the response. However, when using non-
linear multi-body dynamic models, such learning is 
necessary and becomes an integral part of the overall 
autonomous driver model. 

2. The Autonomous Vehicle Model 
Figure 2 illustrates a high-level block diagram of the 
overall model. The block diagram has been somewhat 
simplified to allow focus on the lane change maneuver; 
however, enough information is included to provide a 
better understanding of the framework within which the 
lane change maneuver operates. As described earlier, 
the key characteristic of the model is the separation 
between the dynamic model and associated controllers 
and the behavioral model. Another key characteristic of 
the model is that it uses concurrency to deal with the 
implementation of multiple goals and satisfaction of 
multiple constraints. Specifically, the Control Inputs 
Fusion Logic block illustrated in Figure 1 is responsible 
for receiving the control inputs from multiple 
submodels and determining how to fuse such inputs. 
The output of the fusion block is then directed to the 



dynamics model. The vehicle’s behavior model has 
been implemented using the Hierarchical Concurrent 
State Machine (HCSM) formalism [1]. This formalism 
allows us to model the behavior of a vehicle as a tree of 
state machines where each part of the tree implements a 
separate behavior. The execution semantics of HCSM 
allow us to easily implement hierarchical models with 
built-in concurrency. A detailed description of the 
HCSM formalism is beyond the scope of this article, 
however, Section 5 provides the design for the HCSM 
subtree that is responsible for implementation of the 
lane change maneuver. 
The autonomous vehicle has the ability to move around 
the road network and perform normal traffic operations 
on its own. Autonomous vehicles can also be instructed 
to move around the road network on a pre-defined path 
or perform specific actions during the scenario design or 

by sending run-time instructions to the autonomous 
vehicle during the simulation. Autonomous vehicles 
display the following major behaviors: lane-tracking, 
following other vehicles, lane changes, avoiding 
collisions with oncoming vehicles, and navigating 
intersections. Each of these major behavior categories 
encapsulate several other behaviors and functionalities. 
For instance, the lane-tracking behavior encapsulates 
the following functionality: keeping the vehicle 
positioned in the center of its lane, obeying speed limits, 
slowing down on curves in the road, and obeying 
external commands to control the vehicle’s velocity. 
Due to limited space, we omit further details of the 
overall vehicle model. Readers are urged to refer to 
Ahmad & Papelis (2000) [2] and Papelis & Ahmad 
(20001) [3] for more details. 
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Figure 2 – Autonomous driver model block diagram. 
 



3. Lane Change Maneuver 
The lane change model is responsible for determining 
whether a lane change is necessary and then providing 
guidance for implementing the actual maneuver. Note 
that the interaction between the lane change logic and 
the fusion logic is bi-directional. The lane change logic 
continuously provides to the fusion logic the necessity 
or ability to perform a lane change and associated 
performance data. The fusion logic in turn uses this 
information to determine if and when to commit to a 
lane change. Once the commitment is made by the 
fusion logic, the lane change implements the maneuver 
by utilizing existing parts of the model. For example, 
the lane change model utilizes the lane tracker and 
object follower while implementing the lane change. 
Lane changes can be initiated for a many reasons. These 
reasons are ordered by priority. Zero or more of these 
reasons may be true at any given moment. For example, 
a vehicle may be traveling in the middle lane of a three-
lane highway. There may be a slow-moving vehicle in 
front of it and thus it would want to move to the left 
lane to pass. At the same, this vehicle’s exit may be 
approaching and thus the vehicle would want to move 
the right lane to take the exit. In this case, the vehicle 
would perform the lane change to the right to stay on its 
path because that has higher priority. The lane change 
logic submits the highest priority lane change 
performance information to the fusion logic, which is 
responsible for deciding whether the maneuver will be 
initiated. 
One condition that must always be met is gap 
acceptance. For lane changes, gap acceptance is 
measured against four parameters. The first two 
parameters are the time to collision with a leading 
vehicle or with a following vehicle. The time to 
collision is computed using bumper-to-bumper 
distances. The last two conditions are the absolute 
bumper-to-bumper distances to the leading and 
following vehicles. Different thresholds can be used for 
these four parameters, based on the urgency of 
performing the maneuver or the need to accommodate 
specific driving styles. 
The following sections provide each of the conditions 
computed by the Lane Change Condition Computation 
block. They are referred to as "Reasons" to separate 
them from the various associated subconditions, which 
for brevity are referred to as "conditions." 

Reason 1: Path guidance 
Route planning determines a route that the model 
follows while navigating the road network. Often times, 
a lane change is necessary before reaching an 
intersection to ensure that the route can be followed. 
The following subconditions are evaluated: 
• Condition 1: The vehicle’s current lane does not lead 

to the intersection corridor needed to traverse the 
next intersection. 

• Condition 2: The Estimated Time to Arrival (ETA) 
at the next intersection is within a threshold time, or 
the actual distance is within a threshold distance. 

• Condition 3: The current distance to the intersection 
is within five times the estimated forward distance 
needed to complete the lane change 

• Condition 4: The target lane has proper gap among 
existing traffic, if any. 

If Condition 4 fails and the distance to the intersection is 
less than the distance needed to complete the lane 
change, the lane change maneuver reports back to route 
planning, which then generates a new route. 

Reason 3: Losing lane at upcoming intersection 
Upon encountering an intersection which contains two 
or more corridors that merge into one, as shown in 
Figure 3, the autonomous vehicle has the option to make 
a lane change. When possible, the autonomous vehicle 
changes lanes to ensure a smooth transition into the next 
lane. Before making a lane change, the following 
conditions must be satisfied: 
• Condition 1: On the autonomous vehicle’s path, 

there exists an intersection which merges two or 
more corridors into one. 

• Condition 2: The autonomous vehicle is located on 
or headed toward the corridor that will be merged 
into another corridor.  

• Condition 3: The ETA at the merge point is within a 
threshold time, or the actual distance is within a 
threshold distance. 

• Condition 4: The current distance to the intersection 
is within five times the estimated forward distance 
needed to complete the lane change 

• Condition 5: Target lane gap acceptance. 
 

 

Figure 3 - Losing corridor at upcoming intersection. 

Reason 4: Highway merge 
When entering a highway, an autonomous vehicle has 
the option to make a lane change onto the highway or to 
simply follow the corridor into the highway. When 
possible, an autonomous vehicle performs a lane change 
to ensure a smooth entrance onto a highway without any 
braking. Before making a lane change for this reason, 
the following conditions must be satisfied: 
• Condition 1: The autonomous vehicle should be on a 

highway on-ramp. 
• Condition 2: The autonomous vehicle should have a 

minimum velocity of 35 mph. 
• Condition 3: Target lane gap acceptance. 

Reason 5: Lane change sign 
Upon encountering any sign whose interpretation 
indicates that the current lane will be terminated, the 
autonomous vehicle has to make a lane change. The 
direction of the lane change (left/right) is dictated by the 
sign. Note that this reason is similar to Reason 4; 
however, this reason is utilized to better model lane 
changes implemented in anticipation of a lane change, 



as opposed to observation of the loss of lane. In fact, 
studies [4] have shown that lane changes due to signage 
can have a negative effect on traffic flow, and 
incorporating this into the model allows it to better 
capture such effects. The following subconditions are 
evaluated: 
• Condition 1: The autonomous vehicle should be on a 

highway. 
• Condition 2: There should be a construction sign, 

and the autonomous vehicle should in the same lane 
as the sign. Furthermore, the autonomous vehicle’s 
distance along the road should be somewhere 
between the sign and the distance afterward that the 
sign specifies. 

• Condition 3: Target lane gap acceptance.  

Reason 6: Move into non-passing lane 
An autonomous vehicle monitors the roadway to make 
sure it stays in the non-passing lane on highways when 
not passing other vehicles. Before making a lane change 
for this reason, the following conditions must be true: 
• Condition 1: The autonomous vehicle should be on a 

highway, and there should be a lane to the right 
moving in the same direction as the current lane. 
The lane to the right should not be an off-ramp. 

• Condition 2: The autonomous vehicle did not 
previously complete a lane change for path 
guidance. 

• Condition 3: At least 2 seconds have expired since 
the completion of the last lane change. 

• Condition 4: Target lane gap acceptance. 

Reason 7: Slower vehicles 
On roads with more than one lane traveling in the same 
direction, the autonomous vehicle changes lanes into the 
passing (left) lane when there is a slower moving 
vehicle ahead of it. Before making the lane change, the 
following conditions must be true: 
• Condition 1: There is a vehicle in front of the 

autonomous vehicle that is moving at least 10 mph 
and at most 90% of the autonomous vehicle's 
velocity. 

• Condition 2: At least 3 seconds have expired since 
the completion of the previous lane change. 

• Condition 3: There exists a lane to the left of the 
current lane that is traveling in the same direction. 

• Condition 4: The next intersection is at least 300 m 
away. 

• Condition 5: Target lane gap acceptance. 

Reason 9: Very slow moving or stopped vehicle 
This lane change is very similar to the Slower Vehicle 
Lane Change except that it applies to very slow moving 
or stopped vehicles in front of the autonomous vehicle 
resulting in a unique set of choices for gap accept 
thresholds and urgency of the maneuver. This maneuver 
is often called the "Flying Pass." Before making this 
lane change, the following conditions must be true: 

• Condition 1: There is a vehicle in front of the 
autonomous vehicle that is stopping or is moving at 
most 10 mph and not more than 90% of the 
autonomous vehicle's velocity. 

• Condition 2: There exists a lane to the left of the 
current lane that is traveling in the same direction. 

• Condition 3: Target lane gap acceptance. 

Reason 8: Avoid merging vehicles 
On highways, the autonomous vehicle looks for 
merging on-ramps. If there are vehicles merging onto 
the highway, the autonomous vehicle moves into the 
passing lane to let those vehicles onto the highway. 
Before making the lane change, the following 
conditions must be true: 
• Condition 1: The autonomous vehicle should be on a 

highway lane that has an on-ramp merging with it. 
• Condition 2: There exists a lane to the left of the 

current lane that's traveling in the same direction. 
• Condition 3: There is at least one vehicle 

approaching in the merge lane, and its ETA at the 
current road is within 4 seconds of the ETA of the 
current vehicle. 

• Condition 4: Target lane gap acceptance. 

4. Vehicle Response Learning  
There are two cases where information about the 
physical model is critical in the implementation of the 
lane change logic. The first case is when determining 
the feasibility of performing a lane change, and the 
second is the actual implementation of the maneuver. 
In determining the feasibility of a lane change, the 
behavioral model needs to know how much time or 
distance it will take to perform the lane change. As 
already discussed in Section 2, this performance 
information relies heavily on the response of the vehicle 
dynamics to the control inputs. 
The actual implementation requires providing a proper 
guiding point to the steering controller. Unfortunately, 
one cannot simply provide a step steering input because 
it could lead to oscillations or instabilities. 
Our approach to addressing these issues is to break 
down the lane change maneuver into smaller maneuvers 
that can be separately analyzed and then exercise the 
dynamic model to obtain the limits of performance 
while implementing these submaneuvers. During the 
exercise implementation, the actual performance is 
measured and the results are stored in a database that 
can be consulted at runtime. The final database can be 
used by the driver model both to determine the 
maximum performance maneuver achievable at a given 
time and, once a decision is made, to obtain the control 
inputs that would produce the maneuver. 
The lane change maneuver has been broken down into  
three phases illustrated in Figure 4. The first phase is the 
entry phase, marked as ENT. During that phase, the 
steering controller is given an initial step angle, and in 
following iterations the desired angle is the difference 
between the initial step input and the current orientation 
of the vehicle. At the end of the maneuver, the vehicle is 



traveling along the orientation of the step angle. The 
second phase is the straight segment, marked as STR in 
Figure 4. The steering controller is fed a zero turn. The 
last segment, marked EXT in Figure 4, is the reverse of 
the first segment where the same step angle is fed to the 
steering control, but with opposite sign. 
  

ENT

EXT

STR

 

Figure 4 – Lane change decomposition. 
It is known from control theory that the response of a 
dynamic system to a step can lead to another stable 
state, oscillations, or instability. Even when the system 
reaches a stable state, the amount of time to reach 
stability depends on the system itself and on how 
stability is defined. In this case, the vehicle is stable 
when it reaches the target orientation with oscillations 
diminished below some threshold. Furthermore, for 
practical reasons, we are only interested in the cases 
where stability is reached before the vehicle's lateral 
travel is less than about a lane's width. 
To develop the capabilities database, each vehicle 
model is first driven along a straight line until it reaches 
a target speed. At that point, a step steering input is 
applied and the behavior is measured. If the system 
stabilizes within a lane's width or so, the actual 
longitudinal and lateral distance travel is recorded and 
the process is repeated for a larger step input. If the 
system is unstable, oscillatory, or does not stabilize 
quickly enough, the angle used as the step input is set as 
the performance threshold for the given speed. Once the 
performance limit is determined, the same process is 
applied but for a higher longitudinal velocity. At the end 
of this process, the database contains a large lookup 
table that can be used to determine the maximum step 
input that can be fed to the steering controller at any 
given velocity and the amount of lateral and 
longitudinal travel that the vehicle will cover while 
responding to the step input. Given this information, the 
lane change logic can easily compute the aggregate 
travel of the vehicle, considering that the overall lane 
change maneuver contains two step inputs that are 
symmetric and one straight driving segment for which 
the travel can easily be computed using time-distance 
equations. The information in the database can be used 
multiple ways. For example, it can be used to determine 
whether a lane change is possible at a given speed given 
the amount of space available on the road ahead. If 
space is not a concern, an aggressiveness parameter can 
be used to select how sharp a lane change to implement 
at each speed. In all cases, using lookup tables is 
computationally efficient, something that is critical 
when running in real-time. 

5. The LaneChange HCSM 
In addition to determining the feasibility and 
implementing the maneuver, there are other issues that 

the model should support. These include controlling 
turn signals, re-evaluating conditions, and aborting 
when necessary. As mentioned earlier, the system is 
implemented as an HCSM. The LaneChange HCSM 
extends the basic functionality described in this paper 
by providing persistent state information. As shown in 
Figure 5, the LaneChange HCSM has the following 
modes: 
• Monitor. In this mode, the model continuously 

evaluates the various lane change reasons and 
reports back to the Control Input Fusion component. 

• Signal. Once the command is received to implement 
a lane change, the vehicle begins signaling. 

• Execute: While this state is active, the model 
implements the lane change. 

• Abort. This mode is reached when an ongoing lane 
change has to be aborted because the conditions 
have changed. This state is necessary to 
accommodate the continuously evolving state of the 
virtual driving environment. 

Monitor

LaneChange

Signal Execute Abort

MonitorMonitor

 

Figure 5 – The LaneChange HCSM. 

6. Conclusion 
This paper described a lane change model used within a 
larger autonomous driver model used in driving 
simulator applications. The model uses physics-based 
vehicle dynamics for motion prediction. To 
accommodate the varying response of various vehicles, 
the system utilizes an off-line process that exercises the 
model and stores the response in a database that is 
consulted at runtime to support decision-making and 
maneuver implementation. 
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