Global Data Dictionary Specification and User Interface Documentation

National Advanced Driving Simulator
& Simulation Center
June 21, 2000

Table of Contents

1Chapter 1

Chapter 2
3
2.1
File layout
3
2.2
File example
3
2.3
Keywords
4
2.3.1
Directive
4
2.3.2
#Header section
4
2.3.3
#Block section
5
Chapter 3
7
3.1
Overview
7
3.2
System requirements
7
3.3
Using gddGen
8
3.4
Output
8
3.5
Using the library in your project
8
3.6
The LabVIEW DLL
9
Chapter 4
11
4.1
NDDS types
11
4.1.1
Headers (example)
11
4.2
Publication
12
4.2.1
Header (example)
12
4.2.2
Method description
12
4.2.3
To publish data
13
4.3
Subscription
13
4.3.1
Header (example)
14
4.3.2
Method description
15
4.3.3
Subscribing to data
16
4.4
Miscellaneous functions
16
Chapter 5
17
5.1
Topic naming conventions
17

Overview

The Global Data Dictionary (GDD) is a communication software architecture designed to facilitate the networking of simulation resources such as high-speed computing, operator-in-the-loop simulators, control resources, and visualization resources. The tools described in this document allow the user to remotely access these resources with minimal effort. By creating a specification file (.gdd file) and running the parser (gddGen), the programmer can eliminate most of the details normally associated with network programming.

.gdd File Definition

1.1 File layout

#Header:

Library file name

Types file name

#Block1:

Attributes

Ndds declarations

…

…

$$END$$
$$END$$

#Block2:

Attributes

Ndds declarations

…

…

$$END$$
$$END$$

1.2 File example

#Header:

_LIBNAME dualuselibrary

_TYPENAME dualusetypes

#Block1:

_SECURITY none

_DOMAIN 0

_VERBOSITY 0

_PERSISTENCE 15.0

_STRENGTH 1.0

_DEADLINE 3.0

_SEPARATION 0.0

_QUEUE 1

_NDDSX DriverInputs

float
SteeringWheel_Angle

float
SteeringWheel_Velocity

float
BrakePedalDisp

_$$END$$

_TOOLS

Dynamics Graphing Tool,Plot data from various inputs/outputs

Data Viewer,Inspect data in raw format

$$END$$

_$$END$$

#Block2:

_DOMAIN 1

_VERBOSITY 1

_NDDSX BodyKinematicInfo

double
ChassisCGxyz[3]

float
ChassisOrientation[3]

float
LocalVehicleVelocity

_$$END$$
_$$END$$

1.3 Keywords

1.3.1 Directive

#Header:
Denotes the beginning of the header section. There can be only one #Header: directive per file, and it must be the first directive in the file. Requires the $$END$$ keyword to denote the end of directive.

#Block:
Denotes a new NDDS type section. Each block must contain the _NDDSX keyword along with its declarations. The end of the directive is denoted by the keyword $$END$$.
$$END$$
Denotes the end of a directive section.

1.3.2 #Header section

_LIBNAME filename
Specifies the filename for the static library being created. This field is required.

_TYPESNAME filename
Specifies the name of the file to contain the NDDS types created by nddsgen. The files created will be filename.h and filename.c. This field is required.

1.3.3 #Block section

Attributes

_Security high/medium/(none)
Allows the addition and implementation of security features to a publication. This feature is not yet implemented. Default is none.

_NDDSX string
Declares the types associated with the library. This is the actual definition of the data you wish to publish or subscribe to with the library. Each NDDS type will have a type and name associated with it. The type can be any of the C/C++ primitive types (int, char, float, double, …). The definition can contain arrays of these types: fixed length or variable length. Fixed length arrays are declared with the standard [size], and variable length arrays are declared with <maxsize>. The output will then generate a length and a ptr to the first item. For example: float myVarArray<100> becomes a struct (unsigned int myVarArray.len and float *myVarArray.val). Each declaration block must begin with _NDDSX and end with $$END$$. Each block must have less than 8k of total data.

_DOMAIN int
Sets the domain for the publisher/subscriber. NOTE: A single process can only use a single domain. If your subscription or publications are going to run in one process, you should make sure the domains of all items used are the same. If the domains are different, the domain “active” in your process will be the first domain you initialize. In other words, the first publication or subscription of a given type is initialized. It is recommended that you use the default if you do not understand the differences. Default is 0.

_VERBOSTIY int
Sets the verbosity for the publisher/subscriber. The verbosity allows NDDS to write messages about its activities to the control window. In most cases the default should be used. Default is 0.

_DEADLINE float
A floating point value (in seconds) that specifies the real-time publish/subscribe deadline of the subscription. This deadline provides a guaranteed latest time by which NDDS notifies the application; the expiration of the deadline typically indicates a communication failure or absence of an issue. Default is set to 5.0. Refer to the NDDS manual for further details.

_SEPARATION float
A floating point value (in seconds) specifying the minimum separation of the subscription. The minimum separation limits the receive rate of issues and protects the subscription against publication issues that are sent too fast. Default is set to 0.1. Refer to the NDDS manual for further details.

_PERSISTENCE float
A floating point value (in seconds) that represents the duration for which an issue from the publication overrides issues from other, lower-strength publications. Default is set to 1.0. Refer to the NDDS manual for further details.

_STRENGTH float
A floating point number that provides a mechanism to arbitrate among multiple publishers sending issues with the same NDDS topic. The default value is set to 15.0. Refer to the NDDS manual for further details.

_QUEUE int
Takes an int type argument that is the length of the associated queue. A queue is used by a subscription to store incoming data. Do not use the queue to put off data processing. If you cannot process the information quickly enough, the _SEPARATION setting may need to be adjusted. Also, the queue can fill up very quickly, never giving your program the chance to actually empty it. The default queue is of length 1.

_TOOLS
Provides the declaration of any external tool that will be associated with the data type. Each string is delimited by a return. Inside each single string are two parts. The first part is the application name followed by a comma. The second is a short message giving a hint as to which operation the application performs. The tool association is used extensively by the Dynamic Reconfigurable Engineering Workstation (DREW). Each tool association must begin with the _TOOL keyword followed by string lines and completed with $$END$$.

gddGen

1.4 Overview

The parser that converts a .gdd file into a static library is called gddGen. Accessible methods and objects can be viewed in the header file. These files allow the programmer to publish and subscribe data types that have been specified in the .gdd file. The library virtually eliminates the need to understand low-level networking details and the coding time necessary to implement data communication. Items handled by the library include, domains, timing, security as well as low level communication protocols.

System requirements

To use gddGen, you must have NDDS installed on your machine. Follow the instructions included with the installation package. A utility provided in the NDDS package, called nddsgen, is used to convert a intermediate XDR file into a NDDSType file (.h/.c). These files are then compiled along with code generated by gddGen into the library.

When executing the final program to publish or subscribe, each host must first launch nddsStartDaemon and have the appropriate environment variables set on the machine. NddsStartDaemon must be running for each domain specified. To start the Daemon on a domain other than 0, type nddsStartDaemon –d <domain>. Please refer to the NDDS documentation for more information.

1.5 Using gddGen

To create the library, first create a .gdd file as specified above. Call gddGen from a command line with a .gdd filename as the argument. You can also include a second optional argument containing the directory name to place output files into.

E:\>gddGen myLibrary.gdd

or

E:\>gddGen myLibrary.gdd ..\..\include

1.6 Output

The output from gddGen will be all files necessary to create a static library. These files will compile on Windows NT and Silicon Graphics IRIX systems. Each _NDDSX type declared in the .gdd file will have a class built around it. In the .gdd File example above, _NDDSX DriverInputs becomes the class CDriverInputs. Each class then has variables with the same name as declared in the _NDDSX section. So our example will have SteeringWheel_Angle, SteeringWheel_Velocity, BrakePedalDisp. The library will contain a class CPublication to use when publishing data. This class has a define method and a publish method. There will also be CDriverInputsSubscription class to use when subscribing to data of type CDriverInputs.

Note that there is also another file output from gddGen. This is the code required to interface with LabVIEW. This code is described below.

1.7 Using the library in your project

For Windows:

Code Generation: Multithreaded DLL

Link Input: libndds.lib, libxdr.lib

Link Directory: $(NDDSHOME)\lib\i86Win32VC60

Include Directory: $(NDDSHOME)\include\win32
For IRIX:

Code Generation: -n32 –mips3

Libraries: libndds.a, libutilsip.a, libutilsxx.a, -lc, -lm, -lC

Library Directory: set appropriately

Include Directory: set appropriately

1.8 The LabVIEW DLL

The DLL is required to interface LabVIEW with the GDD library. LabVIEW does not have the ability to interface with C++ code, so a C wrapper must be used. This is exactly what the DLL does. Note that the function of the GDD library will be limited compared to the static library. The DLL provides the following four functions:

define(arguments) – initializes the publisher

subscribe(arguments) – initializes the subscriber

getIssue(arguments) – retrieves the first issue

publish(arguments) – sends data

Following is example code from the above GDD:

int defineDriverInputs(char* topic, int &ecode, float strength, float persist);
int subscribeDriverInputs(char* topic, int &ecode, float deadline,
float separation, int q_size);
void publishDriverInputs(float SteeringWheel_Angle, float SteeringWheel_Velocity,
float BrakePedalDisp);
void getIssueDriverInputs(float &SteeringWheel_Angle,
float &SteeringWheel_Velocity, float & BrakePedalDisp);

Library Description

1.9 NDDS types

A class is created for each _NDDSX block that is defined in the .gdd file. The class name has the character ‘C’ appended to the front of the type name. Objects of these classes can be used to contain data to communicate as well as for general computation.

1.9.1 Headers (example)

class CDriverInputs {

public:

float
SteeringWheelAngle;

float
SteeringWheelVelocity;

float
BrakePedalDisp;

float
AccelPedalDispNormal;

short
GearLeverPosition;

CDriverInputs();

CDriverInputs(CDriverInputs &obj);

~CDriverInputs();

CDriverInputs operator=(CDriverInputs rhs);

}

class CVehicleOutputs {

public:

float
EngineRPM;

float
FuelConsumed;

float
FuelTankGuage;

float
OdometerDistance;

CVehicleOutputs();

CVehicleOutputs(CVehicleOutputs &obj);

~CVehicleOutputs();

CVehicleOutputs operator=(CVehicleOutputs rhs);

}

1.10 Publication

There is exactly one class called CPublication created in the library. It has a publish method for every GDD type created. The user must create an instance of CPublication for each type they want to publish. A binding is created upon the construction of a new CPublication. The binding is between the publication and the topic. Any subscribers will use the topic to get the information you are publishing. Refer to the topic naming conventions in Section 5.1 for information about topics.

1.10.1 Header (example)
class CPublication {

public:

bool publish(const CDriverInputs &obj);

bool publish(const CVehicleOutputs &obj);

bool define(gddtype type, string topic, int &error_code,
float strength = 15.0, float persistence = 1.0);
void statusPrint();

CPublication();

CPublication(string type, string topic);

~CPublication();

private:

NDDSPublication

publication;

static bool

CDriverInputs_PUB_FLAG;

static bool

CVehicleOutputs_PUB_FLAG;

gddtype

publish_type;

string

publish_topic;

float

publish_strength;

float

publish_persistence;

CPublication(CPublication &obj);

CPublication operator=(CPublication rhs);

}

1.10.2 Method description

define()
Gives user the ability to create a CPublication. Inputs are a type, a topic, strength, and persistence. The last two parameters have default values and can be ignored. Type refers to a gddtype that is defined in the header file—for example, DRIVERINPUTS, VEHICLEOUTPUTS. Topic is a unique name that must follow the topic naming conventions. This method returns true if it was successful and false if it fails. The error_code is set appropriately upon exiting the method. It is an error to call define for an object twice. The publication is bound to a topic and will remain that way for the life of the object.

publish()
Actually causes data to be transmitted onto the network. This method requires an object corresponding to the CPublication definition to be passed as a parameter. True is returned if publish is successful, and false is returned if it fails. False will be returned if an object of the wrong type association is passed—for example, if you attempt to pass a DRIVERINPUTS object to publish() when your publication is bound to VEHICLEOUTPUTS.

statusPrint()
Used for debugging. Outputs publication properties to the console. The properties included are type, topic, strength, and persistence.

1.10.3 To publish data

Create a publication with parameters specifying the type and the topic.

bool result;

int ecode;
CPublication myPub;

result = myPub.define(VEHICLEOUTPUTS,”/UofI/NADS/Vehicle/Engine/VehicleOutputs”,
ecode);

Create an object to contain the data to be published.

CVehicleOutputs myData;

myData.GearLeverPosition = 1.0;

myData.SteeringWheelAngle = 90.0;

myData.SteeringWheelVelocity = 0.0;

Publish the data.

result = myPub.publish(myData);

1.11 Subscription

The library contains a subscription class for every type declared in the .gdd file. The example GDD above would create a CDriverInputsSubscription class and a CBodyKinematicInfoSubscription class. There should be one subscription object for every topic you want to subscribe to. Do not confuse topic with type; there can be many different topics with the same type. A maximum of 40 topics for every type has been preset. Refer to the topic naming conventions in Section 5.1 for more information.

1.11.1 Header (example)

class CDriverInputsSubscription {

public:
void getIssue(CDriverInputs &obj, string which);
bool subscribe(string topic, int &error_code, float deadline = 5.0,
float separation = 1.0, int queue_size = 1)

int numberDropped();
void statusPrint();
void arrayPrint();

CDriverInputsSubscription();
CDriverInputsSubscription(string topic);
~CDriverInputsSubscription();

private:
static bool
CDriverInputs_SUB_FLAG;
static int

instance_id;

string

subscribe_topic;

float

subscribe_deadline;

float

subscribe_separation;

CDriverInputsSubscription(CDriverInputsSubscription &obj);
CDriverInputsSubscription operator=(CDriverInputsSubscription rhs);

}

class CVehicleOutputsSubscription {

public:
bool getIssue(CVehicleOutputs &obj, int which);
bool subscribe(string topic, int &error_code, float deadline = 5.0,
float separation = 0.1, int queue_size = 1)

int numberDropped();
void statusPrint();
void arrayPrint();

CVehicleOutputsSubscription();

CVehicleOutputsSubscription(string topic);

~CVehicleOutputsSubscription();

private:

NDDSSubscription

subscription;
static bool

VehicleOutputs_SUB_FLAG;

static int

instance_id;

string

subscribe_topic;

float

subscribe_deadline;

float

subscribe_separation;

CVehicleOutputsSubscription(CVehicleOutputsSubscription &obj);
CVehicleOutputsSubscription operator=(CVehcileOutputsSubscription rhs);

}

1.11.2 Method description

subscribe()
A call to subscribe is required to initialize a subscription. The required parameters are topic, which is a string containing the topic to subscribe to, and error_code, which is an int passed by reference that contains information about a failure. The other parameters, deadline and separation, can be passed with default information specified in the .gdd file, or the user can override them. The return value is a bool with true on success and false on failure. Error codes are defined in the header file. It is an error to call subscribe for an object twice. The subscription is bound to a topic and will remain that way for the life of the object.

getIssue()
Gets an issue from an internal queue and places it in the object passed as a parameter. The second parameter is an int. It is used to remove issues from the queue in a specific order. DL_OLDEST equals-1, DL_MOST_RECENT equals –2, and any positive index will return that item from the queue. A call to getIssue deletes all issues in the queue that were received prior to the issue you are retrieving. Calling getIssue with a parameter of 0 is an error. GetIssue returns a bool depending on success (true) or failure (false).

NumberDropped()
Returns an integer corresponding to the number of issues of a given topic that were lost. This could indicate that getIssue was not called often enough.

statusPrint()
Used for debugging. Outputs subscription properties to the console. The properties included are type, topic, deadline, minimum separation, queue size, number of issues dropped, and total number of issues received.

arrayPrint()
Used for debugging. Outputs a listing of topics currently subscribed to by a given type.

1.11.3 Subscribing to data

Create a subscription object and set up subscription with subscribe call.

bool rvalue;
CVehicleOutputsSubscription mySub;

rvalue = mySub.subscribe(”/UofI/NADS/Vehicle/Engine/VehicleOutputs”,error,
4.0, 0.1, 1);

Create an object to hold data.

CVehicleOutputs dataReceived;

Get data from the subscription.

rvalue = mySub.getIssue(dataReceived);

1.12 Miscellaneous functions

void ecodeToString(int error_code, string &msg)
Converts a GDD library error code into a string.

void cleanUpUNIX()
Cleans up semaphore operations in the UNIX version.

bool getToolList(const string &gdd_type,vector<string> & tools)
Returns the tools associated with a given gdd_type. The tools are returned as a string vector. This function always returns true.

Miscellaneous Notes

1.13 Topic naming conventions

· All topic names must end with a type defined in the GDD.

· A topic will have the following format:

/<location>/<device>/<class>/<data>/<Gdd type>

Examples:

/UofI/NADS/Vehicle/Engine/EngineInfo

/UofI/NADS/Vehicle/Engine/VehicleOutputs

/ZSU/MedLab/Medical/Driver/VehicleOutputs

ii
3

