
IMAGE 2011 Conference

Presented at the IMAGE 2011 Conference

Scottsdale, Arizona – June 2011

SSCCRRIIPPTTIINNGG AAUUTTOOMMAATTIIOONN FFOORR AA GGRRAAPPHHIICCAALL SSCCEENNAARRIIOO AAUUTTHHOORRIINNGG SSYYSSTTEEMM

David A Heitbrink

National Advanced Driving Simulator, University of Iowa

Iowa City, Iowa

ABSTRACT

Scenario authoring at the National Advanced Driving

Simulator (NADS) uses an interactive graphical tool that

permits non-technical people to create scenarios without

requiring any programming experience. This tool, the

Interactive Scenario Authoring Tool (ISAT), has been

enhanced by the addition of a scripting system for

automation and facilitating authoring tasks. ISAT scripting

(ISC) goals are: 1.Reduce the time to add new features to

ISAT through automation, 2. Enable experienced

programmers to build standardized scenario event

components that other users can incorporate into other

scenarios, and 3. Automate highly repetitive scenarios that

contain similar events. Authoring highly reparative

scenarios using a purely graphical interface can be a time

consuming, monotonous, and potentially error prone

process.

Inspired by LOGO, the ISC language is designed to

automate placement and manipulation of scenario objects

(including visible scenario objects, and control objects) with

simple direction commands that navigate a road network. An

ISC script can ask the user questions, such as asking how far

ahead from a point in the environment to place or select an

object. Once an ISC script is created, the user can drop the

script into the scenario and the script will start executing at

the point where the users drop it into the scenario. Overall

ISC has been successful providing automation for a series of

manual tasks, reducing repetitive task performed by scenario

authors, reducing scenario creation time, and decreasing

authoring errors.

INTRODUCTION

Scenario authoring at the National Advanced Driving

Simulator (NADS) uses an interactive graphical, the

Interactive Scenario Authoring Tool or ISAT, that permits

non-computer professionals to create scenarios with minimal

programming expertise. ISAT requires no programing on the

part of the scenario author.

Unfortunately, one side effect of this fully graphic

development environment is that highly repetitive scenarios

can become more difficult to author. For long series of highly

repetitive events like object detection, the scenario is likely

to require a series of triggers with slight changes between

each trigger, and slightly different object placement. The user

would most likely navigate through multiple dialogs and

change values in multiple places, and for an object

detection/recognition scenarios frequently involve more than

100 objects. Without automation, scenario development can

become error–prone.

 Given these short comings, ISAT has been enhanced by the

addition of a scripting system for automation and facilitating

authoring tasks. ISAT scripting (ISC) goals are: 1.Reduce

the time to add new features to ISAT through automation, 2.

Enable experienced programmers to build standardized

scenario event components that other users can incorporate

into other scenarios, and 3. Automate highly repetitive

scenarios that contain similar events. Authoring highly

repetitive scenarios using a purely graphical interface can be

a time-consuming, monotonous, and potentially error- prone

process.

ISC takes its inspiration from the programing language

LOGO [1], a simple programing language that was designed

for children. The ISC language automates the placement and

manipulation of scenario objects (including visible scenario

objects, and control objects) with simple direction commands

that navigate a road network. An ISC script can ask the user

questions such as: “How far ahead from a point in the

environment should an object be placed?”. Once an ISC

script is created, the user can drop the script into the scenario

and the script will start executing at the point where the users

drop it into the scenario. Overall ISC has been successful

providing automation for a series of manual tasks, reducing

repetitive tasks performed by scenario authors, reducing

scenario creation time and decreasing authoring errors.

BACKGROUND

ISAT or Interactive Scenario Authoring Tool is a fully

interactive tool scenario authoring tool, which allows

graphical authoring of driving simulator scenarios as well as

rehearsal and review of simulator runs. ISAT has been

designed to use graphical menus, visual feedback, and guided

input dialog boxes to increase usability. ISAT is designed to

be a fully graphical editor that does not require any level of

programing by the scenario author at any time.

Figure 1. Overview of scenario development integrated

into the experimental design.

ISAT creates a text based scenario file, and relies on a pre-

built logical database. These logical databases are built using

the Tile Mosaic Tool, which stitches together pre-built

segments of the virtual world and outputs the logical data

base, among other things. This logical database contains the

logical road network system. This progression can be seen in

Figure 1. The logical data base consists of “roads” and

“intersections”; a road is a road segment and made up of a

number of lanes, each lane then has a direction of travel. As

shown in Figure 2, intersections are used to connect one road

to another road, each intersection has number corridors that

connect one lane in road to one lane from another road, as

can be seen in Figure 2.

Figure 2. An example of a logical road network.

The role of ISAT is to create the scenario. The scenario

consist of a collection of settings to static objects in the

logical database such as speed limit signs, control units such

as “road pad triggers”, and dynamic elements such as AI

controlled cars. ISAT also has an extensive feature set for

reviewing collected data. Most of the control in scenario is

provided by the way of “Triggers”. A trigger resembles a

logical if-then statement. Each trigger has a predicate

condition and set of actions. The predicate is the logical “if”

part; the actions make up the “then” part. If the predicate is

true, then the trigger performs the “actions”. One of the most

basic triggers is the road pad trigger (Figure 3). When the

target element such as a car is over the road pad, then the

trigger fires its actions, the appearance of a vehicle on the

adjacent road.

Figure 3. An example of a road pad trigger

Numerous scenario elements have “road pads”, a road pad is

describes a “path”. A path is a set of road segments and

corridors that describe a route through the road network.

ISAT SCRIPTING LANGUAGE

LOGO is a language that was designed in Cambridge MA, in

the last 1960’s by Daniel G. Bobrow, Wally Feurzeig,

Seymour Papert, and Cynthia Solomon, as a simple

programing language that children could use. ISC borrows

the concept of LOGO’s turtle to navigate through the road

network to place objects. The turtle, is a graphic system that

instructed a “turtle” (originally this was an actual robot with

a pen) to raise/lower its pen to paper and to move/and or

rotate. All direction was relative to the locations of the turtle.

This provided a simple system that children could grasp, and

use to create relatively complex drawling.

ISC borrows from the concept of the turtle with the

“Position” variable. The position variable describes a

location in the virtual road network. The “anchor” is

constant that represents where the user dropped the script

down. From this “anchor” point the author can navigate

through the road network using a simple set of commands,

and to use these position variables to place scenario

elements.

The Position variable type represents a location on the

virtual road network. The “Anchor” variable is the initial

location where the user drops the script into the scenario.

The position variable consist of three parts, it has a “path”

that can be used as a roadpad, it has a road position (has

road/intersection name, a lane/corridor and an offset, and a

XYZ position. After each operation that changes the

position, the XYZ position is remapped from the logic

database. The path is a set of directions that specify a start

and end location in the logical road network. As the

position is moved locations are added to the end of the

path. The position variable has the following operations:

GoForward

 Go forward a distance (can be negative for

traveling backwards)

TurnLeft, TurnRight, GoStraight

 These functions advance the position through the

next intersection either making a left turn right turn or

going straight

HalfTurnLeft, HalfTurnRight

 These functions advance to the midpoint through

the next turn from the current position

PathOn, PathOff

 Like the pen up and pen down function in LOGO

these functions turn off and turn on the “path”. A path is a

representation of a route through the road network. When

PathOff is set, as the position is moved, its location is not

added onto the path, when PathOn is set, as the position is

moved, its changes are added. When PathOn is set it resets

the Path. The path is set off by default.

SetOffset

 This function set an offset from the center of the

lane. Negative values to the left of the center line, positive

to the right.

ChangeLaneRight, ChangeLaneLeft

 These functions change the current lane the

RoadPos is in either to the right or to the left of the current

position, without changing direction of travel.

Block Type

The Block variable represents a “block” of text. The %%%

represents the start and end of the block of text, the

“Block” variable is used to load a scenario element. Once a

block is assigned to a scenario element variable type, the

scenario element parses the block and treats as if it was

loaded from a scenario file. Various text replace operation

can be done on the Block, such a text replace, and this can

be used to create unique names for every scenario element

created from the “block”. The block has a header, and an

end statement. Each line between the beginning and end

will be parsed as a “key” then a value. Each of these lines

must contain at least two separate values. The contents of a

block variable can be copied directly from the scenario

file. The following is an example of a “Block” declaration,

where the contents of a road pad trigger have been copied

from a scenario (all the text between the “%%%” on the

first and last line are directly from the scenario file):

Block RoadPadTrigBlock %%%

HCSM RoadPadTrigger

 Position -4.5440845E+004 -

6.3007273E+004 3.0000000E+001

 DrawPosition -4.5440845E+004 -

6.2932273E+004 3.0000000E+001

 ByTypeSet "ExternalDriver"

 FireDelFrames 0

 Lifetime 0.0000000E+000

 Name "RoadPadTriggerXXX"

 OneShot 1

 SeqAct 0

 ExtInfo "59.904864:102.310000"

 Path "R:r3c_-48840_-

67320:1[108.06:5.75]"

&&&&End&&&&

%%%

Scenario Elements

ISC also has a large number of scenario element variables

(ADO, dDDO, DDO, Static, TimeTrigger,

ExpressionTrigger, RoadPadTrigger, TTATrigger) that

represent scenario elements. All of these elements support

a SetBlock operation that takes in a block variable and

parses it, creating the scenario element. The position and

roadpad/path of the object can be set through set position

and set road pad. These functions both take a position

variable as a parameter. Also, the scenario elements each

support a “Clone” function. The Clone function creates a

new instance of the object with all the setting of the

original object. Once the object is cloned it is assumed that

any modifications of the object are complete and the

cloned instance is no longer modifiable. In the bellow

example we can create a simple line of 20 barrels:

Static Barrel

Position posRp

Barrel.SetBlock(BarrelBlock)

posRp = Anchor

Barrel.RoadPos = posRp

Value Dist

Value Offset

Repeat 19

 Barrel.Clone

 Dist = 20 + Rand() * 5

 Offset = 6 + Rand()

 posRp.GoForward(Dist)

 Barrel.RoadPos = posRp

End

Note that this loop is repeated only 19 times, as the

original instance of the barrel is never destroyed and will

be last in a line of 20 barrels. Each scenario element

variable supports a SetKey operation that sets key in the

variables parse block. For example, the following line can

be used to set the “Lifetime” setting for a variable:

MyCar.SetKey(“Lifetime”,

1.0000000E+0010)

The above line would instruct “MyCar” to remain active

for 100 seconds after it was created. The SetKey function

allows the programmer to change properties of objects

without any kind of language support for the property.

Action Type

Triggers function as logical if then statements. The actions

function as the then part. The action type represents these

actions. The actions type allows for the manipulation of

triggers actions, such as setting there type, and doing things

such attaching ADOs to a create actions.

Value Type

The Value type represents either a number value or a text

string depending on the context of use. The value variable

supports mathematical operations, and a few functions

such as Rand (random number generator). For instance in

the above example where 20 barrels were created, the

variable Dist is set to a random value between 20 and 25,

and Offset between 6 to 7. This allows us to create a line of

barrels that looks like it was created by a construction

crew.

Ask and Select

ISC also support a number of user interaction functions.

An ISC can instruct the user to select a scenario element,

or a location. The Select statement, if given a message, will

display a text box and wait for the user to select an object.

The following example is for a script that is embedded into

ISAT, and is executed when the user selects a context

menu item “Place Object At”:

.Internal

.Name Push

ScenElem myElem

Position pos

pos = Anchor

Value val

Ask(val,\"How Far Forward do you want

to set the other Object\")

pos.GoForward(val, “Please Select the

Other Object Now”)

Select(myElem)

myElem.RoadPos = pos

.End

The above will select a scenario object and move it to the

exact distance from the object the context menu is selected

from.

RESULTS

ISC scripting has been used in various ways. ISC scripts

can be embedded into ISAT context menus. When the user

right clicks on a scenario element and selects a menu item,

a script can be executed. This reduces programming labor

to implement said feature. For example; the “Make Next

Right Turn” menu option executes a simple script that

modifies the vehicles path to make the next right hand turn.

At NADS, ISC has helped reduce the time to develop

certain scenarios, and has enabled us to better utilize

student labor, as a script for an event that is repeated

frequently in an event can be placed repeatedly will little

prior instruction. Also, ISC has given us an increased level

of flexibility. At NADS, we have had instances where

entire sequences of events where created with a single ISC

script. When a sudden change to the fundamental way the

event was timed was required, a small change to the script

could be made, and the scenarios could quickly be

recreated.

Another use of ISC was to help facilitate the process of

scenario standardization. Omar Ahmad [1] in 2005

described a process for creating scenario an event

definition based on anchor points and locating scenario

elements relative to said anchor points. ISC is partially an

attempt at starting to facilitate said process. ISC can be

used to describe a higher level implementation of an event,

where the locations of scenario elements are relative to

given points. The refinement of ISC is a continuing effort.

Future enhancements include the validation of the fitness

of a location to match a script. For example a script

requires the intersection of two 4 lane roads, “validate”

statements could be added to the script specifying said

requirement. If the location the user has selected fails to

meet this requirement a messages could be displayed

instructing the user why they cannot use a particular script

for a certain area. Another future enhancement is the

interaction with traffic lights, as more additional traditional

language features (case statements, more loop types, etc.).

CONCLUSIONS

Overall ISC has both saved time and reduced errors in

scenario authoring process. The reduced complexity of

inserting premade events into scenarios has enabled NADS to

use staff with less experience to reliably create more

complicated scenarios. Although the ISC scripting language

is still a work in progress, it has already made contributions

to the scenario authoring process at NADS. Because ISC

adds automation to the authoring process, and does not

change the underlying scenario file format, it has allowed

NADS create repetitive scenarios without having to modify

our underlying scenario control system.

AUTHOR BIOGRAPHIES

Optional; may be copied from paper proposal form.

REFERENCES

[1] The LOGO fondation, What is LOGO retrieved May

4, 2011, http://el.media.mit.edu/logo-

foundation/logo/index.html

[2] A.N. Omar Ahmad, 2005, “Issues Related To The

Commonality And Comparability Of Driving

Simulation Scenarios", Proceedings of the IMAGE

2005 Conference, The IMAGE Society

http://el.media.mit.edu/logo-foundation/logo/index.html
http://el.media.mit.edu/logo-foundation/logo/index.html

