How Do You Turn This Driving Simulator On?

Tutorial for Traffic Engineering and Roadway Design Research Using Driving Simulation

Sue Chrysler
Linda Ng Boyle
Richard Romano
Agenda

1:30 Introductions
1:45 Hardware Selection and Room Set-up
 Richard Romano
2:05 Research Topics and Scenarios
 Sue Chrysler
2:20 Experimental Design Concepts
 Linda Ng Boyle
2:40 Data Collection Tips
 Sue Chrysler
3:00 Group Exercise
4:00 Discussion and Questions
4:30 Adjourn
Hardware Selection and Room Set-up

Richard Romano
Eye Relief (Display Distance)

- It is important for visuals objects in simulator to be located “behind” the screen.
- Otherwise they look too big and too far away.
Eye Relief

- When screens are too close (inside 4 feet ?)
 - Eye strain from accommodation
- Eye strain is worse than computer work
 - The “virtual” image is further away
 - Fights with accommodation reflexes

Taken from thefarmersdaughter.com
Selecting Cab Size

- Full vehicle is large, expensive, and hard to move into a room
- ½ cab can be effective
- ¼ cab (or desktop) are smallest
 - Eliminates the roof and pillars
 - Can make it difficult to locate your car in the virtual world.

Taken from bransonpianomo.com
Monitors are very close for larger field of view (FOV)
 ◦ Smaller, cheaper monitors
 ◦ Allow displaying interior elements of the vehicle (i.e. dashboard)

Disadvantages
 ◦ Close monitors can cause eye strain
 ◦ No passengers
 ◦ No interior components
Resulting Designs: Quarter Cab

- Bring monitors close to display vehicle mirrors and vehicle exterior in the monitors
- Can include center console
- Disadvantages
 - No passengers
 - Difficult to have a wide FOV
 - Vertical or horizontal
 - Can’t test accommodation time changes from monitor
 - Out the Window to interior (cluster, etc.)
Resulting Designs: Full or Half Cab

- Requires large room
 - Must push screens out beyond the vehicle
- Typically use projectors
- Stop signs on right and cars on left are “inside” screen so they don’t always look correct
 - Complaints that they look too big and too far away
Curved screen has constant distance to the screen (good for accommodation cues)
Head/vehicle motion causes a kink in the horizon on faceted screens
Steering Feedback

- Passive Steering
 - Spring feedback

- Active Steering
 - Motor mounted on steering wheel
 - More expensive
 - Can use tighter on center torque to help drive the car straight when looking away from the road
 - Helps you recover from a skid by turning the road wheels into the direction of travel

Taken from gov.uk
Motion Feedback

- Is important for vehicle controllability
- Pitch and Yaw
 - Important motion cues for simulator sickness
 - Supports our ocular reflexes
- Vision uses position to interpolate velocity
- Acceleration feedback needed
 - From our vestibular system for good vehicle control
- High gain and high tilt rate motion improve controllability but does not feel good
Motion and Sickness (Pitch)

- In real world
 - Vestibular ocular reflex makes it so the car pitches around your eyes.

- In a fixed based simulator
 - Horizon just moves up
 - Issues with the car “pitching” too much

- A pitch motion base can support the reflex properly.
- Or turn off pitch motion in the dynamics.
Vestibular ocular reflex (VOR)

- Allows you to track the road
- Without vestibular feedback (yaw motion) the subject must rely on the Optokinetic Nystagmus (OKN)
- If motion in simulator is scaled, eyes must use both OKN and VOR
- Motion bases can filter motion so the yaw rate is not constant, which makes it even worse

Motion and Sickness (Yaw)

- Lack of yaw motion cues
 - Make driving performance worse at intersections
 - Cause driver induced oscillations
- People complain about steering wheel and vehicle dynamics
- Simulator users tend to minimize many turns at intersections
- The only real fix is an unlimited motion yaw ring.

Taken from forcedynamics.com
Room Requirements

- No need to paint room black
 - But windows need to be close to light tight

- Power
 - May need several dedicated 120 V circuits
 - 600 W Computer \rightarrow 5 Amps \rightarrow 2000 BTU

- Air conditioning
 - 10000 BTU for multi channel desktop to 50000 BTU for larger systems).

- Need cool air flow past the driver

- Need a place for the computers

- Need a place for the experimenters
 - Tasks lights (desk lights) are a good
Work Flow

- Driver’s enter and exit from the left side
- Sit so you can see the driver but they can’t see you
- Enter from the back of the room if possible
- How about observers?
What Have You Done?

- What changes can/have you made to improve your room?
 - Air conditioning/lighting?

- What changes can/have you made to improve your simulator?
 - Different monitors/projectors?
 - Different control layout?
 - Changes to the cab?
 - Other accessories?