
1

THE SCHEMA ARCHITECTURE AND DRIVING SIMULATOR APPLICATIONS

Hugh Sparks – MTS Systems, hugh.sparks@mts.com
Judy A. Carmein - Solidica
Bradford K. Thoen - MTS Systems
Allen J. Clark - MTS Systems

August 14, 2001

ABSTRACT
Schema is an object-oriented development environment for building large distributed control systems. It
has been successfully applied to diverse applications including earthquake simulators, driving simulators,
robotics, and manufacturing process controls.

Schema classes support multi-rate digital signal processing, model-reference adaptive control, system modeling,
transparent inter-processor communication and construction of a graphical user interface. The development tools are
based on an interactive programming environment that runs on most popular operating systems. The distributed real
time environment works on a variety of multiprocessor architectures.

Driving simulator applications make demanding use of all Schema features because they integrate multi-
axis motion control with real-time graphics, audio and scenario management on distributed systems. The
paper describes the Schema development environment and reviews its application in several recent driving
simulator projects.

THE SCHEMA ARCHITECTURE
The goal of the Schema programming system is to facilitate the rapid development of industrial control
applications running on distributed processing hardware. Software tools included with Schema address all
aspects of the application from the graphical user interface to device drivers for sensors and actuators.

Key features of Schema

Object Orientation
Schema uses classes and objects for all levels of the application from the GUI to embedded code for digital
signal processing.

Interactive Programming
As far as possible, all aspects of the software can be examined and modified while the control system is
running.

Integrated development environment
The tools used to develop the software remain part of the finished application. Should exceptional
circumstances call for debugging, they can be activated to explore the running software.

Transparent access to all system levels
The idea of transparency in this context refers to the ability to inspect all aspects of the system during
normal operation. This is the function of special diagnostic software in more conventional control systems.
Diagnostic software typically exposes only a small subset of the information present in a complex system.
By activating the development tools that are part of a Schema application, all levels of the software and all
component state information may be examined.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

2

Rapid development cycle
Using typical embedded software tools, a system is evaluated by first starting the software and using it to
put the hardware into a state that demonstrates a behavior to be improved or altered. The system must then
be shut down so code can be edited, compiled and downloaded. Finally the software is restarted and the
system returned to the previously state so the change can be evaluated. This cycle is repeated thousands of
times during the development of a large industrial automation system, so a substantial reduction in the time
required to restore the system to a given state will greatly impact the total development time. In many
situations Schema permits the running system to be modified, reducing the state restoration time to zero.

Evolutionary development
It has been observed that large software systems are not built, but rather “evolved.” The Smalltalk
environment was the first (1) to demonstrate that interactive object oriented programming could greatly
facilitate an evolutionary and iterative approach to large system development. Schema implements an
environment modeled closely after the Smalltalk, but adapted for the requirements of high speed signal
processing and control.

Software prototyping
Schema can be used to rapidly create the graphical user interface of a large industrial control application.
The ability to demonstrate a functional user interface early in the development cycle help users understand
the features the finished system will perform. The ability to make rapid online changes to the prototype
facilitates the negotiation process between developers and users. In some cases, users can modify the
prototype to demonstrate their own requirements.

Portability
Schema is designed for portability at all levels. The entire graphical user interface of a Schema application
will run unmodified on any version of Windows, Macintosh or Linux/Unix workstation. All of the signal
processing and control tools are based on ANSI standard C. Only a small volume of hardware interface
code depends on the particular embedded processor environment. Using the popular and portable VxWorks
operating system minimizes dependencies at this level.

System modeling
The real-time control, signal processing and mathematical tools used to build controllers are also useful for
constructing analog computer-like simulations. As part of the application prototyping effort, the graphical
user interface can be connected to a model of the hardware system. If the hardware model is sufficiently
detailed, it is possible to predict many attributes of the finished system. When the real hardware becomes
available, the same prototype application can be connected to real hardware with no changes to the high
level software.

Scalability
Schema supports parallel processing on common bus shared memory systems and on systems
interconnected by a high speed LAN.

Parallel processing
The signal processing and control components of Schema communicate using data flow networks. The
objects themselves execute concurrently under the control of a scheduler. Dataflow diagrams are a natural
way to express parallel computation and can usually directly express the implementation of signal flow
diagrams used by control engineers.(2) Schema dataflow technology has been used on large processor
arrays. (3)

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

3

Transparent object communication
Schema objects communicate directly using messages or through data-flow connections that transport time
sampled signals. Regardless of how objects are placed in the distributed processor network, the
interconnections are described by the same software specification. The developer is free to design the
object architecture and later explore optimum execution arrangements.

Object Oriented Programming Mechanisms
A detailed discussion of object oriented programming is beyond the scope of this paper, but a few key
concepts must be defined to show how Schema implements its component framework. We will use
terminology borrowed from the Smalltalk language (1) to illustrate these ideas.

Objects are data structures used to create models of entities in the environment manipulated by a software
system. Objects can model physical things like motors, actuators and sensors. They can also represent
software abstractions provided by the operating system like files, windows, and processes.

Classes are used to specify how objects are represented and how they behave. Every object is said to be an
instance of a class. The internal representation of an object is determined by a set of named instance
variables. The values stored in the instance variables of a particular object determine the state of that
object. All instances of a given class have the same set of internal instance variables.

Metaclasses are a powerful feature of some object-oriented languages where classes are themselves objects.
Every class is an instance of a metaclass and has a protocol like any other object. A metaclass allows each
class to define unique creation and initialization methods for its instances. Objects-oriented languages that
lack the metaclass protocol must introduce complex and much less flexible features to deal with these
issues. (5)

Messages are used to manipulate objects. A message has a name called a selector. A message may
optionally include a set of actual parameters.

A message expression is used to send a message to an object. Message expressions are the procedure calls
of an object-oriented language.

If the variable x contains an object, the following message expression might be used to change the object’s
color to red:

x.setColor[red]

In this example, the object contained in the variable x is the receiver of the message. The message consists
of the selector setColor and the single actual parameter is a variable red that contains some specification of
a color.

Methods define the procedures of an object-oriented language. When a message is sent to an object, a
method is executed to manifest some response or behavior. The association of selectors and methods is
defined on a class by class basis. Any number of classes can define a method for a particular selector.
Methods, like procedures in functional languages, may specify any number of formal parameters. The
collection of methods and parameters defined by a class determine the protocol for objects that are
instances of the class.

In the example message expression above, the class of the object stored in the variable x would define a
method for the selector setColor. The method would have one formal parameter, perhaps theColor, and
would contain a sequence of expressions needed to alter the color of the object.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

4

Polymorphism refers to the non-unique association between selectors and methods. A class used to
represent a display string on the user interface screen could define a method for setColor that changes the
color of the string. A class used to represent the interface for a paint-spraying robot could define a method
for setColor that determines which color to spray. The selector is the same in both cases.

Specifying a set of instance variables and a set of methods defines a new class. In addition, a new class may
inherit instances variables and methods from an existing class. In this case, the new class is said to be a
subclass of the existing class. The existing class is a superclass of the new class.

Binding time refers to how a method is found to implement the behavior invoked by a message expression.

In early or static binding languages, the variable that contains the message receiver object must be declared
in advance so that it may only contain objects of a specific class. In this case, the compiler knows which
method will be required and the generated code will be a simple procedure call.

In late or dynamic binding languages, the variable that contains the message receiver has no declaration
about the class of object it may contain. In this case, the method must be located at run time by searching
the receiver object’s class for a method that implements the message selector.

The binding strategy used by a object oriented languages is a controversial subject. Smalltalk, Objective C,
Python and various object oriented dialects of Lisp use dynamic binding. C++, Java, C#, Eiffel are
examples of languages that use static binding. The advantages and disadvantages of early and late binding
languages depend to some extent on the nature of the application domain. A consensus seems to be
emerging that interactive prototyping environments are more effective with the dynamic binding strategy.
(4)

Schema uses dynamic binding for several reasons:

Generic data structures – A key advantage of dynamic binding is the ability to create generic data
structures and generic application frameworks that will work with objects and classes introduced after they
are created. For example, a class List may be defined with methods to add, remove and enumerate the
objects it contains. The List may be used to hold any collection of objects regardless of their class.

Abstract methods – Another advantage of dynamic binding is the ability to define abstract methods: A
method can be defined that depends only on the protocol of the objects it manipulates, not on their
representation. For example, a method to implement efficient sorting can be written and compiled once and
for all time. It depends only on the requirement that the objects it sorts will understand a Boolean-valued
magnitude comparison selector.

Application frameworks – Application frameworks were introduced to make the graphical user interface for
an object oriented program consistent, attractive, and easy to program. Dynamic binding makes it possible
to use a compiled application framework with objects and classes that were never anticipated by the
framework programmer. This is done by making extensive use of abstract methods in the framework class
hierarchy. Schema extends the abstract framework concept to the real-time signal processor and control
environment.

Transparent distributed object communication - An attractive feature for a distributed environment is
transparent messaging: Consider a List class that implements an abstract method for sorting. It should be
possible to sort objects on the list even if some of the objects reside on remote processors. To do this, it
must be possible to write software that makes no distinction between local and remote objects when
generating code for message expressions. Dynamic binding makes this feature easy to implement.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

5

Schema Software Environments
Schema classes are constructed with two distinct but closely coupled programming tools: COOPS and
Alltalk. COOPS (C Object Oriented Programming System) is based on ANSI standard C augmented with
classes, objects and messages. The COOPS layer of Schema is used to implement a comprehensive set of
tools for physical modeling, digital signal processing, and feedback control.

The Alltalk programming environment is used to implement the graphic user interface (GUI) for the
application as well as all high-level application functions. The Alltalk layer of Schema also provides the
interactive programming interface for COOPS.

Both Alltalk and COOPS contain features to implement communication between objects on multiple
computers. A typical Schema application will have one workstation running an Alltalk GUI connected to
one or more systems running COOPS control systems. Systems that require multiple user interface
workstations may run several Alltalk GUI programs connected on a LAN.

COOPS (C Object Oriented Programming System)
COOPS implement all the Schema features required by the embedded real-time environment. It extends C
by adding classes, metaclasses, methods and messages.

Key features of COOPS:

Portability
COOPS is implemented as an extension to ANSI standard C to achieve the greatest possible portability.
COOPS will run under any operating system when used for simulations. For real-time controllers, COOPS
depends on an environment with a hard real-time clock. COOPS can run on specialized digital signal
processors with no other operating system software. On machines that support VxWorks, COOPS will use
the portable clock and tasking features it provides.

Deterministic memory management
COOPS is part of an interactive programming environment. Because objects can be created, interconnected
and destroyed while the system is running, it is necessary to employ dynamic data structures for all real-
time components. The heap memory management supplied by the C runtime environment is not stable
because it becomes fragmented after extended use. Also, heap algorithms frequently employ non-
deterministic searches when allocating or deallocating memory. For these reasons, COOPS employs a
dynamic memory system called a Pile. Objects are created by sending the new message to a class. Every
class contains an initially empty list of available instances. When a class responds to a request for a new
instance, it tries to supply one from the internal list. If the list is empty, the new object is allocated from a
large linear memory array by advancing a free spaced pointer. As a result, objects can always be allocated
or deallocated in a fixed time and there is no heap to become fragmented.

Hard real-time scheduling
COOPS provides rate monotonic scheduling (RMS), an optimal strategy for handling multi-rate systems.
(6) Other object frameworks for real-time applications are discussed in (14). Conceptually, RMS assigns a
priority to each process proportional to the required sampling rate. Higher rate processes have higher
priority and can preempt processes running at slower sampling rates. COOPS avoids the use of processes
by using an algorithm based on reentrant interrupts from a single clock. This technique avoids much of the
overhead required by process context switching and allows COOPS to run on embedded systems that have
no other operating system.

The clock provides the highest rate interrupt to the scheduler, which divides the rate down to any number of
slower rates. Tasks that execute at the same rate are placed on a data structure called a sequence, which
determines their order of execution. The scheduler manages the sequences and causes preemption when
required.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

6

Figure 1 show the conceptual arrangement of the scheduling system. Each task contains a message
expression, usually directed to a method in a particular data flow object. By using tasks as an intermediate
structure, it is possible to have data flow objects with multiple periodic behaviors, each with its own rate.

Clock

Scheduler

Sequence: 1000 Hz

Sequence: 10 Hz

Sequence: 100 Hz

AnalogInput.doit Function
Generator.doit

MotorServo.doit

Tasks:

LimitDetector.doit

TemperatureServo.doit

1 2 3

FIGURE 1 Rate monotonic scheduler components.

The COOPS RMS algorithm also deals with situations where a processor is overscheduled. The
conventional RMS with processes will lock out objects with slower sampling rates when the system is
overloaded. This would be unacceptable and often dangerous in mechanical automation applications. When
COOPS is overloaded, some time is added to the clock tic, effectively slowing the system down enough to
allow all objects to run at a slightly reduced sampling rate.

The clock used to control the COOPS scheduler can be adjusted explicitly while the control system is
running. When the clock rate is adjusted, all periodic objects are notified that their sampling rate has
changed. Each signal processing class implements a method that responds to the rate change message by
recomputing all internal state variables that depend on the sampling rate.

Message expression syntax
COOPS messages are implemented as special generic functions. Using the color example discussed above,
a message to change the color of an object stored in the variable x appears below:

setColor(x, red) ;

The first parameter to the setColor message is the message receiver. All additional parameters are the
actual parameters of the message. In this example, setColor is a generic function. Methods for setColor
may exist in several classes. The generic function will determine the proper method at runtime using the
dynamic binding strategy.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

7

Transparent distributed object communication
The syntax for messages is the same for local and remote objects. In the setColor example, the variable x
may contain a local object or an object reference obtained from a remote system. If the object is non-local,
the generic function will forward the message to the remote system using shared memory or the LAN. This
process is completely automatic and transparent. No special message syntax is required to reach non-local
message receivers.

Data flow programming
COOPS programmers implement signal processing and control software using dataflow networks.
Dataflow networks are a natural description of many inherently concurrent programming problems. (12)
Signal processing and control components are interconnected using software terminals. Any COOPS class
can define named input and output terminals for its instances as shown in Figure 2. Terminals are created
and stored in the object’s instance variables like any other state information.

PIDServo

command

feedback out

Output terminal Input terminals

CyclicFg

outfg servo

FIGURE 2 Data flow objects.

When an output terminal on one object is connected to an input terminal on another object, the instance
variable that describes the input terminal is modified so it points directly to the output terminal. Figure 3
shows a connection between two data flow objects, a function generator and a servo controller. The C
expression that creates this connection is simply:

 connect(out(fg), inp(servo)) ;

The expression is evaluated by sending the out message to the fg object, which will return the selected
output terminal. The inp message is sent to the servo object, returning an input terminal. Finally, the
connect message is sent to the output terminal with the input terminal as an actual parameter. The method
for connect is implemented in class OutputTerminal.

fg servo

FIGURE 3 The logical effect of a connection.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

8

Figures 4 and 5 show how the connection is implemented with memory pointers. A typical controller is
built by creating a large network of interconnected. The rate monotonic scheduler arranges for the objects
to run at the proper rate and in the required sequence. When an object is scheduled to run, it reads its input
terminals, performs a signal processing operation and updates its output terminals.

fg 1.5 servo

0.0

0.0

0.0

FIGURE 4 Memory pointers before connection.

fg 1.5 servo

0.0

0.0

FIGURE 5 Memory pointers after connection.

Connections can be made or broken at any time while the control system is running. To undo the effect of
the connection expression show above, the following C expression is used:

 disconnect(out(fg), inp(servo)) ;

When terminals are disconnected, memory is allocated and attached to the free input terminal, restoring the
memory that illustrated in Figure 4. The value stored in the new detached input terminal is copied from the
old output terminal. This has the effect of freezing the last value sampled so that future executions of the
disconnected object will see a constant value.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

9

Interprocessor dataflow
Objects on different processors that share common memory can participate in a common data flow
diagram. When connections are specified between objects on different processors, the data flow
connections are automatically made using shared memory. Figure 6 shows the mechanism for an
interprocessor connection. The program uses the same syntax to make local and non-local connections.

fg

servo

Processor A

Processor B

Shared Memory

OutConnector

InpConnector

1.5

FIGURE 6 Connections between processors.

Schema will automatically recognize that a connection is directed to a remote object. The connection is first
re-routed to an available slot on an OutConnector. The OutConnector will send a message to the
InpConnector on processor B to complete the connection. Both connectors are configured to use a common
shared memory location.

Connectors are themselves actively scheduled. When the scheduler runs the OutConnector on processor A,
values stored on its input terminals are copied to a shared memory location. When the InpConnector runs
on processor B, values are copied from the shared memory location and distributed to the output terminals.

Dataflow rate matching
When objects are connected that run at different sampling rates, COOPS provides rate-matching filters.
A high-rate object connected to a low-rate object will use a low-pass filter to prevent aliasing. When a low-
rate object is connected to a high -rate object, an up-sampling filter is used.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

10

Dataflow synchronization between processors
When two objects are connected across processor boundaries, the connector objects will be scheduled
independently, which sometimes gives unsatisfactory results. If the objects run at different sampling rates
and their sampling rate difference is large, the matching filters discussed above will often correct
disturbances caused by desynchronization. When the rate difference is small, the receiving objects must be
scheduled to run after the sending object. To deal with this problem, a pair of synchronized connectors may
be used. The classes are called SyncOut and SyncIn. They are substituted for the InpConnector and
OutConnector described above. The memory management of the connection works as shown in Figure 6.

When synchronized connectors are used, the sender runs normally on a sequence controlled by its
scheduler. The SyncOut connector is usually placed last on its sequence so it will run later than objects that
generate output signals it will carry. When the SyncOut connector runs, it sends a trigger signal to its
associated SyncInp connector using shared memory. The SyncInp connector is configured to control its
parent sequence. The scheduler will defer execution of this sequence until the trigger arrives. All dataflow
objects that depend on data from the SyncInp are placed later on the sequence, insuring that they run after
their data samples arrive.

Dataflow in distributed systems
When processors are distributed on a network, data flow connections are made using reflective serial
memory hardware such as the SysTran SCRAMNet (7). SCRAMNet connections are managed exactly like
shared memory connections.

Time sampled data types
Data flow signals may be time-sampled integer, Boolean or floating point values. Vector valued
connections are supported through terminal array types. Boolean-valued signals are used with logic gates
and digital I/O hardware to perform the functions of a programmable logic controller. Many signal
processing objects have a mixed set of terminal types.

Examples: A Boolean input terminal is often used to pause or resume the main signal processing path
through a filter. Limit detectors have a Boolean output that becomes True when the input floating-point
signal is out of bounds. Floating-point vector signals are used extensively in six degree of freedom robot
and platform controllers.

The COOPS class hierarchy
A typical COOPS application contains hundreds of classes. The following outline displays only a
representative subset. Additional class documentation is presented in (11).

Foundation classes Filters
Object FIRFilter
Class IIRFilter

 AdaptiveFIRFilter
Data structures LowPass

List HighPass
Dictionary Notch
Association LatticeFilter
Array SampleHold

 Rate matching filters
 UpSampler
Rate Monotonic Scheduling DownSampler

Clock
Scheduler Servos
Sequence PIDServo
Task TVCServo
DSPObject PolePlacementServo

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

11

Data Acquisition Function generators
DAQBuffer RampFg
CircularDAQ CyclicFg
ScopeBuffer RandomFg
MatlabDAQFile RandomPeriodFg

Dataflow connections

Terminal Limit detectors
IntTerminal PeakPicker
FloatTerminal FloatLimit
OutConnector IntLimit
InpConnector DynamicLimit
SyncInp
SyncOut

Logic Gates
 AndGate
Interprocessor messaging OrGate

Link
Message Modeling
Uplink Mass
Downlink MassInverse
UpSocket Jacobian
DownSocket InverseTransform
UpShare Actuator
DownShare Inverse Actuator

Transformations Hardware interface

ScalarTransform DigitalInput
VectorTransfom DigitalOutput
Matrix AnalogInput
LinearSwitch AnalogOutput
LinearDemux

Alltalk
Alltalk implements the graphical user interface for Schema applications. Alltalk also supplies the
interactive programming and debugging environment for COOPS. Alltalk implements classes, metaclasses,
methods, and messages using a block-structured syntax similar to Modula II or Ada.

Key features of Alltalk:

Portable
Alltalk is implemented entirely in ANSI standard C to achieve the greatest possible portability. Alltalk runs
under most versions of Microsoft Windows, including WindowsCE for handheld devices. Versions for
Macintosh and all Linux and Unix workstations that use X-Windows are also available. An application
written in Alltalk will run without modification on any supported system.

Interactive
Alltalk programs can be modified and extended at any time. There is no modal distinction between
developing and running a program. Interactive programming in an object-oriented environment has proven
exceptionally effective for rapid prototyping. (13)

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

12

Self reflective
All the programming tools such as browsers, inspectors & debuggers are written in Alltalk and are part of
every application. Classes that describe the execution and compiler variables are part of the environment.
This information is a key asset for implementing transparent communication between Alltalk objects on
networked computers.

Deterministic memory management
Alltalk programs rely on dynamic memory allocation and deallocation to support interactive software
development and modification. Alltalk also employs the Pile memory architecture used by COOPS. The
performance gained by this technique is substantial: Languages such as Smalltalk that employ reference
counting garbage collection use up to 30% of the processor to handle this feature. (8) Languages that use
scanning garbage collection have behaviors completely unsuited to a real-time application: They stop
responding to the user interface for unpredictable time intervals.

Message expression syntax
Alltalk messages are implemented using ‘dots’ to separate message selectors from objects. Using the color
example discussed above, a message to change the color of an object stored in the variable x has this form:

x.setColor[red]

As in COOPS, methods for setColor may exist in several classes. The runtime binding strategy searches for
the proper method staring in the class of the receiver object and working up through all the superclasses.
The search is optimized by a cache, which greatly reduces the overhead for message binding.

The left to right order of Alltalk expressions make them more attractive for many expressions involving
objects and messages. For example, the data flow connection expression discussed earlier take this form in
Alltalk:

 fg.out.connect[servo.inp]

This expression illustrates cascaded messages: the result of fg.out (an OuputTerminal) becomes the receiver
of the connect message which has the input terminal returned by servo.inp as an actual parameter.

Most developers prefer to configure the entire COOPS network using Alltalk rather than programming in C
language level in COOPS.

Transparent distributed object communication
Alltalk programs can interact transparently with objects created on other systems in the Alltalk or COOPS
environment. When an object reference is exported, the local address is compressed to make room for a
node number that uniquely identifies the system where the object was created. The resulting bit pattern is
made an instance of class RemoteObject. Class RemoteObject implements a method for undefined, but no
other methods. Consequently, all messages directed to an instance of RemoteObject are handled by the
method for undefined. The message receiver’s bit pattern contains the node number, which is used to find
the appropriate Link to the remote system. Class Link contains all the mechanisms for formatting and
transmitting a message to a remote processor. When the remote system receives the message, the receiver
object is transformed back into a local address. Any actual parameters for the message are also transformed
into local objects if their node numbers match that of the local system.

System State Preservation
Alltalk applications have automatic support for saving and restoring the state of complex object networks.
Although Alltalk messages can directly manipulate remote objects, it is a common practice to introduce a
set of local Alltalk classes that mirror those found in the COOPS environment. These mirror classes are
called models, because they are used to construct a complete description of how the real-time network is
configured. All messages that modify the state of a remote COOPS system pass through the models where
information needed to restore the state of the remote system is cached.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

13

When Alltalk is used to create a prototype GUI for demonstration purposes, the model layer remains part of
the prototype. When users operate controls on the GUI, the models are modified. When no COOPS system
is attached, the models simply record changes to the state information. When a COOPS system is attached,
the changes are passed through to the remote system.

The entire hierarchical model layer may be written to a file using a general object pacification mechanism.
These files are the ‘documents’ created by an Alltalk application. When the file is read, the state of all the
model objects is restored. The models then update the remote COOPS system so they reflect the new state.
This procedure is used record all the calibration, turning and configuration information for the COOPS
network. Because the remote COOPS system usually a machine controller, it is often call the machine.
Figure 7 illustrates the relationship between the view, model and machine environments.

FIGURE 7 View-Model-Machine relationships.

International language support
Alltalk applications support dynamic language translation. A menu selection is used to choose one of
several supported languages. All graphical user interface elements that contain text instantly change to
display the selected language, resizing and repositioning themselves as necessary. This is a valuable feature
when training because the teacher and student can switch between their native languages while the
application is running.

Developers write applications in their native language. A data file is then created automatically that
contains all GUI display text in the native language. A bilingual translator edits this file by adding
appropriate translations for each phrase. Any number of translations can be created and included with the
same application.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

14

The Alltalk class hierarchy
A subset of the Alltalk class hierarchy is presented below to suggest the breadth of features provided:

Foundation classes Graphics Support
Object View
Class Image
Method FillView
Selector FrameView
Context Event

 Control
Files Font

Directory
File Display text
StringFile Text
BinaryFile DynamicText
SerialFile Paragraph
BinaryRecord EditParagraph
Socket Translation

Data structures Buttons

Dictionary Button
Association BoxButton
List NameButton
Array ImageButton
ByteArray CheckBox
String RadioCluster
WideString
Literal Signal manipulation
WideLiteral NumberDisplay
RealArray NumberControl
IntegerArray SignalDisplay

 SignalControl
Programming tools BarSignalDisplay

Browser Scope
Workspace Trace
Inspector Knob
Listener CircularKnob

Windows Remote object models

Window Model
ViewWindow ModelArray
Panel AliasModel
CrtWindow Parameter
ModalDialog RemoteParameter
ModalConfirm RemoteObject
ModalGetParam RemotePort
ModalNotifier Processor

Menus Networked objects

Menu Node
MenuBar Link
PopUpMenu RemoteThing
ComboBox
RadioCluster

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

15

Alltalk GUI Gallery
The following windows are examples of programming tools and user interface panels from a typical Alltalk
application. (The NADS motion controller) These panels are presented to show how the Alltalk GUI looks
to the end users and developers.

The Browser, Figure 8, is used to inspect or modify any Alltalk class. The upper left window pane shows a
list of all classes. The upper right pane displays all the method selectors implemented by the class. The
lower large pane shows the source code for the class. More details about the Alltalk development tools are
found in (9).

FIGURE 8 The Alltalk browser.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

16

The Inspector, Figure 9, is used to examine the state variables of any object. Selecting any object displayed
in the inspector view will ‘open’ that object to display a new view.

FIGURE 9 An object inspector.

The ScopePanel, Figure 10, is a simple two-channel oscilloscope. The component buttons, displays and
text are all instances of other Alltalk GUI classes:

FIGURE 10 A two channel oscilloscope panel.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

17

Transfer functions can be measured by specifying signals on any pair of terminals. The Transfer Function
Estimator, Figure 11, uses an FFT to determine the magnitude and phase of the transfer function.

FIGURE 11 Transfer function estimator configuration.

Once configured, the transfer function can be observed on the Frequency Response Function Plotter,
Figure 12. The plots can also show the power spectral density of the signal of the input or output signals.
Other menu options (not shown) allow the user to display the transfer function of any digital filter in the
system.

FIGURE 12 Transfer function display.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

18

Washout filters are specialized high pass filters used in driving simulators to keep the motion base centered
in the room while simultaneously providing the driver with appropriate inertial cues. The panel shown in
Figure 13 is used to adjust the washout parameters for the TARDEC and NADS driving simulators. Details
about the NADS washout filter and its adjustments are presented in (10).

FIGURE 13 Washout filter tuning.

DRIVING SIMULATOR APPLICATIONS
The motion control problem for driving simulators has many demanding requirements where Schema has
proven effective:

Driving simulators are large real-time applications that must integrate large numbers of sensor and actuator
channels on physically distributed computers. Because Schema supports distributed dataflow processing,
the hardware for hundreds of signal converters may be located on multiple computers placed close to the
actuator arrays they control.

Accurate high-bandwidth servo control on multiple synchronized degrees of freedom are required to
implement the motion subsystems. Schema uses closed loop servo control in degree-of -freedom space,
rather than on individual motors or actuators. Kinematic transformations to and from actuator space are
computed continuously in the controller. This strategy has numerous advantages for tuning and operating
the motion base. (15)

Minimum phase delays between driver initiated command and motion response.
The payload is stabilized with a multi-variable feedback controller. A parallel feed-forward model predicts
the required actuator and motor commands. This strategy has proven very effective in minimizing phase
delays in the control system. (16)

The controller must deal with non-linear plant characteristics: The moving configuration of actuators and
payload determines a dynamically changing plant transfer function. The feed-forward part of the Schema
controller contains a non-linear inverse model of the actuator-motor-payload system. This inverse model
consists of a rigid body component and a hydraulic component. The rigid body inverse model predicts the
forces required to move the payload allowing for all inertial effects and the variable orientation of the
actuators. The inverse hydraulic component predicts the valve openings required to obtain the required
actuator motion.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

19

Safety and reliability are critical because simulators have human drivers. Schema addresses safety and
reliability in several ways: Limit detectors monitor all safety critical parameters in the controller.
Responses to out-of-bounds conditions on any signal are configurable to provide a warning, arrest the
motion of the platform, or perform a complete power shutdown. Integrated time domain and frequency
domain analysis tools make it possible to explore and verify controller stability throughout the envelop of
motion.

The most important contribution to safety is the stability of the software component base. Because Schema
controllers are constructed using classes that have evolved through use in diverse applications, they have
become highly reliable. Conventional single-step source code debugging is rarely done because code
defects at this level have been eliminated. The process of programming in Schema consists of constructing
the appropriate data flow diagram and tuning the resulting system while examining signals. Graphical
oscilloscopes, meters and signal analysis tools are the most commonly used tools: The debugging and
development process resembles electronic prototyping where the circuit and component values can be
modified while the circuit operates. A detailed analysis of software and hardware safety issues for a driving
simulator is presented in (17).

Driving simulators that use Schema
Schema has been used for several recent simulator projects: TARDEC, NADS, Ford, and VTI. All of these
systems have embedded COOPS motion controls integrated with Alltalk. The TARDEC system also uses
COOPS for high-level system configuration and data flow between subsystems.

The following sections provide a brief overview for some of these applications.

The TARDEC/TACOM tank simulator
The tank-driving simulator at TARDEC/TACOM is a large Schema application. There are two motion base
systems: one for the tank driver, Figure 14, and one for the turret crew, Figure 15. The turret motion base
supports a real tank turret. When simulating a tank, the system operates both platforms in parallel as one
vehicle. It is also possible to configure either motion base as an independent vehicle.

Each motion controller contains:

• 64436 Objects

• 514 Data flow objects

• 3608 Terminals

• 5027 Parameters

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

20

The COOPS object network runs on two PowerPC processors: One for servo control and one for the
washout filter and safety monitor. Additional information on the architecture and operation of the
TARDEC motion controller is available in (18).

FIGURE 14 The TARDEC tank driver’s motion base.

FIGURE 15 The TARDEC tank crew motion base.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

21

The TARDEC simulator uses COOPS for high-level system configuration and scenario management as
well as dataflow between the subsystems. The motion controller hosts are Windows NT machines. All
other subsystem hosts are Unix workstations. Figure 16 shows the simulator architecture.

The simulator can participate in DIS Net battle simulations with crews driving on remote simulators. Each
participant can see the other tanks and try to blast them out of existence. (Simulated shocks and explosions
only.)

ESIG

Effects
Database

Static
Terrain

Database

Static
Structure
Database

Static
Vehicle

Database

DIS Network

Accel., Brake, Steer,
Gear.

Gauges, indicators

Turret Slew &
Guage Feedbacks

Outgoing
Information

TARDEC
Simulator Architecture

(MTS, 1997)

ESIG
Commands &

Data

Other Vehicle's
Position Updates

Collision
Information

Collision
Damage

Collision
Information

Position,
Velocity,

Acceleration
of Hull

Collision Sound
Information

Turret Slew &
Guage Feedbacks

Turret Orientation

Performance
Degradation
Information

Flight Path
of Launched

Munitions

Detonation
Information

Incoming
Information

Weapon
Commands

Engine Sounds

Other Vehicle &
Weapon Sounds

Weapon
Commands

Indigo 2

Harris Night Hawk
5800

Appearence
Changes

Fire and detonation
effect events

Own Vehicle
Weapon Fire

Visible
Damage to

Others

Damage to
own Weapons

Eye Point Position &
Orientation

PSG

PSG

PSG

VTronics
VTronics

PSG

VTronics

PSG

MTS

VTronics

MTS MTS MTS

VTronics

VTronics

PSG

MTS

6 DOF
Commands

Dynamic
World
Model

Surface Effects
Generator

Driver
Control

Interface

RMS
Motion Controller

RMS
Safety Monitor

TMBS
Safety Monitor

TMBS
Motion Controller

Weapons
Manager

Terrain Interpolator

Graphics
Manager

Sound
Manager

Commander
Control

Interface

Gunner
Control

Interface

Vulnerability/
Damage

Assessment

PDU
Interpreter/
Generator

Simulation
Operator's
Console

Collision
Manager

Vehicle
Dynamics

6 DOF
Commands

FIGURE 16 TARDEC driving simulator architecture.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

22

NADS Motion Controller
The National Advanced Driving Simulator has a Schema controller for a hexapod motion base mounted on
an X-Y carriage. (See Figures 17 and 18.)

FIGURE 17 NADS Testing at MTS.

FIGURE 18 NADS at the passenger dock.

The NADS motion controller runs COOPS on distributed PowerPC processors with an Alltalk GUI running
on a Windows NT host. Four PowerPC subsystems are placed near the motors or actuators they control, all
subsystems are linked using SCRAMNet shared memory.

1. Command generator and washout filter
2. Hexapod controller
3. X crossbeam controller
4. Y carriage controller

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

23

The Schema environment for the NADS motion controller contains:

• 72,245 objects

• 650 Data flow objects

• 3500 Terminals

• 4375 Parameters

Scenario management and system configuration is handled by software from TRW.

The washout filter for NADS is designed to apportion all translations to the X-Y carriage. Tilt coordination
and vertical motion are handled by the hexapod. A turntable on the platform is used for yaw motion. Figure
19 shows the top-level dataflow diagram for the washout filter. Figure 13 shows the control panel used to
adjust the filter parameters.

Translational
Specific Force

Translational
Filtering

Rotational
Filtering

Tilt
Coordination

TurntableNonLinear
Transform

Rotational
Motion

Apportion-
ment

Gravity
Constant

Translational
Force

Translational
Motion

Apportion-
ment

Hexapod
Translational
Acceleration
Commands

Carriage
Acceleration
CommandsHexapod

Rotational
Displacement
Commands

Rotational
 Velocity

Hexapod
Euler

Angles

TurnTable
Acceleration
Commands

Hexapod
Rotational

Acceleration
Commands

FIGURE 19 The NADS washout filter.

A review of the NADS controller is presented in (15) and (16). The architecture and operation of the
controller is covered in great detail by (10).

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

24

Ford VIRTEX Driving Simulator
The Ford “Virtual Test Track Experiment” (VIRTEX, Figure 20) uses a Schema motion controller running
on a single PowerPC processor. Ford Research Laboratory developed all other aspects of the simulator
software.

FIGURES 20a, 20b Ford VIRTEX motion base and dome.

VTI Driving Simulator
The Swedish National Road and Transportation Research Institute, Figure 21, has developed and operated a
pivoted motion base for several years. Recently, the institute has added a linear degree of freedom based on
the NADS motion base technology using a motor driven metal belt and a carriage with hydrostatic
bearings. This system uses Schema only for the linear controller.

FIGURE 21 VTI Conceptual drawing with cab.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

25

The new VTI simulator is currently being assembled and tested in Sweden, Figure 22.

FIGURE 22 VTI Linear motion base.

FUTURE WORK

Data flow diagram editing
Currently, scripts written in Alltalk create Schema dataflow graphs. This is somewhat archaic because
previous MTS data flow systems used integrated graphical diagram editors. (12) The next major release of
Schema will support interactive editing of the diagrams.

Integration with Matlab/Simulink diagrams
Many end-users want to incorporate Matlab or Simulink models with COOPS controllers. A currently
funded development program will add this feature to our next generation earthquake simulators. Upon
completion, this capability will be part of the generic Schema toolkit.

Interconnected rigid bodies (joints)
The forward and inverse rigid body models used with the hexapod controllers can handle arbitrary actuators
connected to a single rigid body with arbitrary inertia. In order to handle interconnected rigid bodies, joint
models for common connections are being developed for Schema. Several researchers have described
frameworks that deal with kinematics and dynamics in an object-oriented framework. (19)

Flexible body models using modal analysis
Vibration modes are currently handled ad-hoc by adding hand-tuned resonators and anti-resonators to the
control loop. This is currently done in degree-of-freedom space and is only accurate for small
displacements from the home position of the payload. By measuring the normal modes of the payload and
incorporating them into the generic inertia model, we hope to obtain better compensation for all payload
orientations.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

26

Improved hydraulic controls
The inverse hydraulic models used in the current driving simulators and shock controllers (20) have been
extended to include several non-linear effects due to oil compression flow, large actuator displacements and
asymmetric actuators. Updated models and inverse models have been developed with Simulink and will be
part of future Schema systems.

Large scale distributed systems using Internet II
The University of Nevada Reno has obtained an NSF grant for the NEES program: “Network for
Earthquake Engineering Simulation”. Several features will be added to Schema for this program including
broadband audio and video channels for teleoperation and many new error recovery and fault tolerance
features.

ACKNOWLEGEMENTS
To realize the vision of a comprehensive framework for industrial control software would not be possible
without a large community of developers and end users. The Schema architecture has matured through over
100 entity-years of labor. The authors would like to acknowledge the large contribution of these Schema
developers:

Mark Brudnak (TARDEC), Mark Fullen, Tom Hessburg, Dean Hystad, Peter Jeeps,
Rod Larsen, Jim Langseth, Gary Laughlin, Jon Lonstreth, Karen Nohr, Victor Paul, Paul Randal, Rich
Romano (Real Time Technologies), Jim Rosenow, Craig Schankwitz (University of Minnesota),
Marlin Sunderman, Scott Zwetler

All contributors are current or former employees of MTS System Corporation unless otherwise noted.

REFERENCES

1) Goldburg, A. and Robson D., Smalltalk: The Language and Its Implementation, Addison-Wesley, 1983.

2) Sparks, H., Object Oriented Dataflow Programming Techniques for Industrial Automation, Proceedings of
Control Expo 90, Chicago, 1990.

3) Chatham, B. and Sparks, H., Butterfly HOSE: Graphical Programming for Parallel Systems,
Abstracts of IEE and USENIX Fifth Workshop on Real-time Software and Operating Systems, Washington, 1988,
pp. 75-79.

4) Kiczales,G. J. Rivieres, & D. Bobrow, The Art of the Metaobject Protocol, MIT Press, 1991

5) Freburger, K. RAPID: Prototyping Control Panel Interfaces, Proceedings of OOPSLA 87, ACM 1987, pp. 416-
422.

6) Klein, Mark, Thomas Ralya, Bill Pollak, Ray Obenza, Michael Harbour, A Practitioner’s Handbook for Real-
Time Analysis, Kluwer, 1993

7) SCRAMNet Network: Simplicity and Speed, SYSTRAN Corporation, 1997.

8) Krasner, Glen, Smalltalk-80: Bits of History, Words of Advice, Addison-Wesley, 1984.

9) Sparks, H., Introduction to Programming with Alltalk, MTS Systems Corporation, 1991.

10) NADS Motion Subsystem, Operation Software Manual, MTS System Corporation, 2001.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

27

11) Sparks, H., MTS COOPS: C Object Oriented Programming System Product Overview, MTS Systems
Corporation, 1995.

12) Sparks, H., Uniform Dataflow Software System for Global CIM Applications, Proceedings of CIMCON 90,
National Institute of Standards & Technology, 1990, pp. 353-372.

13) Goldburg, A. The Influence of an Object-Oriented language on the Programming Environment,
Interactive Programming Environments, McGraw-Hill, 1984, pp. 141-174.

14) Buhr, Peter A., Harji, Lim & Chen, Object-Oriented Real-Time Concurrency, Proceedings of OOPSLA
2000, ACM, pp. 29-46

15) Carmein, Judy A. and Clark, Allen J., New Methods for Increased Fidelity and Safety of Simulation Motion
Platforms, Proceedings of the AIAA Modeling and Simulation Technologies Conference, Boston, 1998, pp. 295-
304.

16) Clark, A., Sparks, H., Carmein J., Unique Features and Capabilities of the NADS Motion System,(CD-ROM),
Submission ID 254-O, Proceedings of the 17th International Technical Conference on the Enhanced Safety of
Vehicles, Amsterdam 2001. NHTSA.

17) The Ride Motion Simulator Safety Assessment Report, MTS Systems Corporation, 1998.

18) TARDEC RMS Motion Controller Users Guide, MTS Systems Corporation, 1998.

19) Lee, Ji Y, Kim, Hye J., and Kang, Kyo C., A Real World Object Modeling Method for Creating
Simulation Environment of Real-Time Systems, Proceedings of OOPSLA 2000, ACM, pp. 94-104.

20) Hessburg, T., Krantz, D., Shock Test System Performance Prediction and Feed-Forward Control using High-
Fidelity Nonlinear Dynamic Hydraulic System Modeling, Proceedings of the 68th Shock and Vibration Symposium,
Baltimore, 1997.

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).

