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ABSTRACT 
Schema is an object-oriented development environment for building large distributed control systems. It 
has been successfully applied to diverse applications including earthquake simulators, driving simulators, 
robotics, and manufacturing process controls.  
 
Schema classes support multi-rate digital signal processing, model-reference adaptive control, system modeling, 
transparent inter-processor communication and construction of a graphical user interface. The development tools are 
based on an interactive programming environment that runs on most popular operating systems. The distributed real 
time environment works on a variety of multiprocessor architectures. 
 
Driving simulator applications make demanding use of all Schema features because they integrate multi-
axis motion control with real-time graphics, audio and scenario management on distributed systems. The 
paper describes the Schema development environment and reviews its application in several recent driving 
simulator projects. 

THE SCHEMA ARCHITECTURE 
The goal of the Schema programming system is to facilitate the rapid development of industrial control 
applications running on distributed processing hardware. Software tools included with Schema address all 
aspects of the application from the graphical user interface to device drivers for sensors and actuators. 

Key features of Schema 

Object Orientation 
Schema uses classes and objects for all levels of the application from the GUI to embedded code for digital 
signal processing. 

Interactive Programming 
As far as possible, all aspects of the software can be examined and modified while the control system is 
running. 

Integrated development environment 
The tools used to develop the software remain part of the finished application. Should exceptional 
circumstances call for debugging, they can be activated to explore the running software. 

Transparent access to all system levels 
The idea of transparency in this context refers to the ability to inspect all aspects of the system during 
normal operation. This is the function of special diagnostic software in more conventional control systems. 
Diagnostic software typically exposes only a small subset of the information present in a complex system. 
By activating the development tools that are part of a Schema application, all levels of the software and all 
component state information may be examined. 
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Rapid development cycle 
Using typical embedded software tools, a system is evaluated by first starting the software and using it to 
put the hardware into a state that demonstrates a behavior to be improved or altered. The system must then 
be shut down so code can be edited, compiled and downloaded. Finally the software is restarted and the 
system returned to the previously state so the change can be evaluated. This cycle is repeated thousands of 
times during the development of a large industrial automation system, so a substantial reduction in the time 
required to restore the system to a given state will greatly impact the total development time. In many 
situations Schema permits the running system to be modified, reducing the state restoration time to zero.  

Evolutionary development 
It has been observed that large software systems are not built, but rather “evolved.” The Smalltalk 
environment was the first (1) to demonstrate that interactive object oriented programming could greatly 
facilitate an evolutionary and iterative approach to large system development. Schema implements an 
environment modeled closely after the Smalltalk, but adapted for the requirements of high speed signal 
processing and control. 

Software prototyping 
Schema can be used to rapidly create the graphical user interface of a large industrial control application. 
The ability to demonstrate a functional user interface early in the development cycle help users understand 
the features the finished system will perform. The ability to make rapid online changes to the prototype 
facilitates the negotiation process between developers and users. In some cases, users can modify the 
prototype to demonstrate their own requirements. 

Portability 
Schema is designed for portability at all levels. The entire graphical user interface of a Schema application 
will run unmodified on any version of Windows, Macintosh or Linux/Unix workstation. All of the signal 
processing and control tools are based on ANSI standard C. Only a small volume of hardware interface 
code depends on the particular embedded processor environment. Using the popular and portable VxWorks 
operating system minimizes dependencies at this level. 

System modeling 
The real-time control, signal processing and mathematical tools used to build controllers are also useful for 
constructing analog computer-like simulations.  As part of the application prototyping effort, the graphical 
user interface can be connected to a model of the hardware system. If the hardware model is sufficiently 
detailed, it is possible to predict many attributes of the finished system. When the real hardware becomes 
available, the same prototype application can be connected to real hardware with no changes to the high 
level software. 

Scalability 
Schema supports parallel processing on common bus shared memory systems and on systems 
interconnected by a high speed LAN. 

Parallel processing 
The signal processing and control components of Schema communicate using data flow networks. The 
objects themselves execute concurrently under the control of a scheduler. Dataflow diagrams are a natural 
way to express parallel computation and can usually directly express the implementation of signal flow 
diagrams used by control engineers.(2) Schema dataflow technology has been used on large processor 
arrays. (3) 
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Transparent object communication 
Schema objects communicate directly using messages or through data-flow connections that transport time 
sampled signals.  Regardless of how objects are placed in the distributed processor network, the 
interconnections are described by the same software specification. The developer is free to design the 
object architecture and later explore optimum execution arrangements.  

Object Oriented Programming Mechanisms 
A detailed discussion of object oriented programming is beyond the scope of this paper, but a few key 
concepts must be defined to show how Schema implements its component framework. We will use 
terminology borrowed from the Smalltalk language (1) to illustrate these ideas. 
 
Objects are data structures used to create models of entities in the environment manipulated by a software 
system. Objects can model physical things like motors, actuators and sensors. They can also represent 
software abstractions provided by the operating system like files, windows, and processes. 
 
Classes are used to specify how objects are represented and how they behave. Every object is said to be an 
instance of a class. The internal representation of an object is determined by a set of named instance 
variables. The values stored in the instance variables of a particular object determine the state of that 
object. All instances of a given class have the same set of internal instance variables. 

Metaclasses are a powerful feature of some object-oriented languages where classes are themselves objects. 
Every class is an instance of a metaclass and has a protocol like any other object.  A metaclass allows each 
class to define unique creation and initialization methods for its instances. Objects-oriented languages that 
lack the metaclass protocol must introduce complex and much less flexible features to deal with these 
issues. (5) 
 
Messages are used to manipulate objects. A message has a name called a selector.  A message may 
optionally include a set of actual parameters. 
 
A message expression is used to send a message to an object. Message expressions are the procedure calls 
of an object-oriented language. 
 
If the variable x contains an object, the following message expression might be used to change the object’s 
color to red: 
 

x.setColor[red] 
 

In this example, the object contained in the variable x is the receiver of the message. The message consists 
of the selector setColor and the single actual parameter is a variable red that contains some specification of 
a color. 
 
Methods define the procedures of an object-oriented language. When a message is sent to an object, a 
method is executed to manifest some response or behavior. The association of selectors and methods is 
defined on a class by class basis. Any number of classes can define a method for a particular selector.  
Methods, like procedures in functional languages, may specify any number of formal parameters. The 
collection of methods and parameters defined by a class determine the protocol for objects that are 
instances of the class. 
 
In the example message expression above, the class of the object stored in the variable x would define a 
method for the selector setColor.  The method would have one formal parameter, perhaps theColor, and 
would contain a sequence of expressions needed to alter the color of the object. 
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Polymorphism refers to the non-unique association between selectors and methods. A class used to 
represent a display string on the user interface screen could define a method for setColor that changes the 
color of the string.  A class used to represent the interface for a paint-spraying robot could define a method 
for setColor that determines which color to spray. The selector is the same in both cases. 
 
Specifying a set of instance variables and a set of methods defines a new class. In addition, a new class may 
inherit instances variables and methods from an existing class. In this case, the new class is said to be a 
subclass of the existing class. The existing class is a superclass of the new class.  

Binding time refers to how a method is found to implement the behavior invoked by a message expression.    

In early or static binding languages, the variable that contains the message receiver object must be declared 
in advance so that it may only contain objects of a specific class. In this case, the compiler knows which 
method will be required and the generated code will be a simple procedure call. 
 
In late or dynamic binding languages, the variable that contains the message receiver has no declaration 
about the class of object it may contain. In this case, the method must be located at run time by searching 
the receiver object’s class for a method that implements the message selector. 
 
The binding strategy used by a object oriented languages is a controversial subject. Smalltalk, Objective C, 
Python and various object oriented dialects of Lisp use dynamic binding. C++, Java, C#, Eiffel are 
examples of languages that use static binding. The advantages and disadvantages of early and late binding 
languages depend to some extent on the nature of the application domain. A consensus seems to be 
emerging that interactive prototyping environments are more effective with the dynamic binding strategy. 
(4) 
 
Schema uses dynamic binding for several reasons: 
 
Generic data structures – A key advantage of dynamic binding is the ability to create generic data 
structures and generic application frameworks that will work with objects and classes introduced after they 
are created. For example, a class List may be defined with methods to add, remove and enumerate the 
objects it contains. The List may be used to hold any collection of objects regardless of their class. 
 
Abstract methods – Another advantage of dynamic binding is the ability to define abstract methods: A 
method can be defined that depends only on the protocol of the objects it manipulates, not on their 
representation. For example, a method to implement efficient sorting can be written and compiled once and 
for all time. It depends only on the requirement that the objects it sorts will understand a Boolean-valued 
magnitude comparison selector. 
 
Application frameworks – Application frameworks were introduced to make the graphical user interface for 
an object oriented program consistent, attractive, and easy to program. Dynamic binding makes it possible 
to use a compiled application framework with objects and classes that were never anticipated by the 
framework programmer. This is done by making extensive use of abstract methods in the framework class 
hierarchy. Schema extends the abstract framework concept to the real-time signal processor and control 
environment. 
 
Transparent distributed object communication - An attractive feature for a distributed environment is 
transparent messaging: Consider a List class that implements an abstract method for sorting. It should be 
possible to sort objects on the list even if some of the objects reside on remote processors. To do this, it 
must be possible to write software that makes no distinction between local and remote objects when 
generating code for message expressions. Dynamic binding makes this feature easy to implement. 
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Schema Software Environments 
Schema classes are constructed with two distinct but closely coupled programming tools: COOPS and 
Alltalk. COOPS (C Object Oriented Programming System) is based on ANSI standard C augmented with 
classes, objects and messages. The COOPS layer of Schema is used to implement a comprehensive set of 
tools for physical modeling, digital signal processing, and feedback control. 
 
The Alltalk programming environment is used to implement the graphic user interface (GUI) for the 
application as well as all high-level application functions. The Alltalk layer of Schema also provides the 
interactive programming interface for COOPS. 
 
Both Alltalk and COOPS contain features to implement communication between objects on multiple 
computers. A typical Schema application will have one workstation running an Alltalk GUI connected to 
one or more systems running COOPS control systems. Systems that require multiple user interface 
workstations may run several Alltalk GUI programs connected on a LAN. 

COOPS (C Object Oriented Programming System) 
COOPS implement all the Schema features required by the embedded real-time environment. It extends C 
by adding classes, metaclasses, methods and messages. 

Key features of COOPS: 

Portability 
COOPS is implemented as an extension to ANSI standard C to achieve the greatest possible portability.  
COOPS will run under any operating system when used for simulations. For real-time controllers, COOPS 
depends on an environment with a hard real-time clock. COOPS can run on specialized digital signal 
processors with no other operating system software. On machines that support VxWorks, COOPS will use 
the portable clock and tasking features it provides. 

Deterministic memory management 
COOPS is part of an interactive programming environment. Because objects can be created, interconnected 
and destroyed while the system is running, it is necessary to employ dynamic data structures for all real-
time components. The heap memory management supplied by the C runtime environment is not stable 
because it becomes fragmented after extended use. Also, heap algorithms frequently employ non-
deterministic searches when allocating or deallocating memory. For these reasons, COOPS employs a 
dynamic memory system called a Pile.  Objects are created by sending the new message to a class. Every 
class contains an initially empty list of available instances. When a class responds to a request for a new 
instance, it tries to supply one from the internal list. If the list is empty, the new object is allocated from a 
large linear memory array by advancing a free spaced pointer. As a result, objects can always be allocated 
or deallocated in a fixed time and there is no heap to become fragmented. 

Hard real-time scheduling 
COOPS provides rate monotonic scheduling (RMS), an optimal strategy for handling multi-rate systems. 
(6) Other object frameworks for real-time applications are discussed in (14). Conceptually, RMS assigns a 
priority to each process proportional to the required sampling rate. Higher rate processes have higher 
priority and can preempt processes running at slower sampling rates. COOPS avoids the use of processes 
by using an algorithm based on reentrant interrupts from a single clock. This technique avoids much of the 
overhead required by process context switching and allows COOPS to run on embedded systems that have 
no other operating system. 
 
The clock provides the highest rate interrupt to the scheduler, which divides the rate down to any number of 
slower rates. Tasks that execute at the same rate are placed on a data structure called a sequence, which 
determines their order of execution. The scheduler manages the sequences and causes preemption when 
required.  
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Figure 1 show the conceptual arrangement of the scheduling system. Each task contains a message 
expression, usually directed to a method in a particular data flow object. By using tasks as an intermediate 
structure, it is possible to have data flow objects with multiple periodic behaviors, each with its own rate. 
 

Clock

Scheduler

Sequence: 1000 Hz

Sequence: 10 Hz

Sequence: 100 Hz

AnalogInput.doit Function
Generator.doit

MotorServo.doit

Tasks:

LimitDetector.doit

TemperatureServo.doit

1 2 3

 
 

FIGURE 1 Rate monotonic scheduler components. 
 
The COOPS RMS algorithm also deals with situations where a processor is overscheduled. The 
conventional RMS with processes will lock out objects with slower sampling rates when the system is 
overloaded. This would be unacceptable and often dangerous in mechanical automation applications. When 
COOPS is overloaded, some time is added to the clock tic, effectively slowing the system down enough to 
allow all objects to run at a slightly reduced sampling rate. 
 
The clock used to control the COOPS scheduler can be adjusted explicitly while the control system is 
running. When the clock rate is adjusted, all periodic objects are notified that their sampling rate has 
changed. Each signal processing class implements a method that responds to the rate change message by 
recomputing all internal state variables that depend on the sampling rate. 

Message expression syntax 
COOPS messages are implemented as special generic functions. Using the color example discussed above, 
a message to change the color of an object stored in the variable x appears below: 
 

setColor(x, red) ; 
 

The first parameter to the setColor message is the message receiver. All additional parameters are the 
actual parameters of the message. In this example, setColor is a generic function. Methods for setColor 
may exist in several classes. The generic function will determine the proper method at runtime using the 
dynamic binding strategy.  
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Transparent distributed object communication 
The syntax for messages is the same for local and remote objects. In the setColor example, the variable x 
may contain a local object or an object reference obtained from a remote system.  If the object is non-local, 
the generic function will forward the message to the remote system using shared memory or the LAN.  This 
process is completely automatic and transparent. No special message syntax is required to reach non-local 
message receivers. 

Data flow programming 
COOPS programmers implement signal processing and control software using dataflow networks. 
Dataflow networks are a natural description of many inherently concurrent programming problems. (12) 
Signal processing and control components are interconnected using software terminals. Any COOPS class 
can define named input and output terminals for its instances as shown in Figure 2. Terminals are created 
and stored in the object’s instance variables like any other state information.  
 
 

PIDServo

command

feedback out

Output terminal Input terminals

CyclicFg

outfg servo

 
FIGURE 2 Data flow objects. 

 
 
When an output terminal on one object is connected to an input terminal on another object, the instance 
variable that describes the input terminal is modified so it points directly to the output terminal. Figure 3 
shows a connection between two data flow objects, a function generator and a servo controller. The C 
expression that creates this connection is simply: 
 
 connect(out(fg), inp(servo)) ; 
 
The expression is evaluated by sending the out message to the fg object, which will return the selected 
output terminal. The inp message is sent to the servo object, returning an input terminal. Finally, the 
connect message is sent to the output terminal with the input terminal as an actual parameter. The method 
for connect is implemented in class OutputTerminal. 
 

 

fg servo

 
 

FIGURE 3 The logical effect of a connection. 
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Figures 4 and 5 show how the connection is implemented with memory pointers. A typical controller is 
built by creating a large network of interconnected. The rate monotonic scheduler arranges for the objects 
to run at the proper rate and in the required sequence. When an object is scheduled to run, it reads its input 
terminals, performs a signal processing operation and updates its output terminals. 
 
 
 
 

fg 1.5 servo

0.0

0.0

0.0

 
 

FIGURE 4 Memory pointers before connection. 
 
 
 
 
 

fg 1.5 servo

0.0

0.0

 
 

FIGURE 5 Memory pointers after connection. 
 
 
Connections can be made or broken at any time while the control system is running. To undo the effect of 
the connection expression show above, the following C expression is used: 
 
 disconnect(out(fg), inp(servo)) ; 
 
When terminals are disconnected, memory is allocated and attached to the free input terminal, restoring the 
memory that illustrated in Figure 4. The value stored in the new detached input terminal is copied from the 
old output terminal. This has the effect of freezing the last value sampled so that future executions of the 
disconnected object will see a constant value. 
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Interprocessor dataflow 
Objects on different processors that share common memory can participate in a common data flow 
diagram. When connections are specified between objects on different processors, the data flow 
connections are automatically made using shared memory. Figure 6 shows the mechanism for an 
interprocessor connection. The program uses the same syntax to make local and non-local connections. 
 
 

fg

servo

Processor A

Processor B

Shared Memory

OutConnector

InpConnector

1.5

 
 

FIGURE 6 Connections between processors. 
 

Schema will automatically recognize that a connection is directed to a remote object. The connection is first 
re-routed to an available slot on an OutConnector.   The OutConnector will send a message to the 
InpConnector on processor B to complete the connection. Both connectors are configured to use a common 
shared memory location.  
 
Connectors are themselves actively scheduled. When the scheduler runs the OutConnector on processor A, 
values stored on its input terminals are copied to a shared memory location. When the InpConnector runs 
on processor B, values are copied from the shared memory location and distributed to the output terminals. 

Dataflow rate matching 
When objects are connected that run at different sampling rates, COOPS provides rate-matching filters.  
A high-rate object connected to a low-rate object will use a low-pass filter to prevent aliasing. When a low-
rate object is connected to a high -rate object, an up-sampling filter is used. 
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Dataflow synchronization between processors 
When two objects are connected across processor boundaries, the connector objects will be scheduled 
independently, which sometimes gives unsatisfactory results. If the objects run at different sampling rates 
and their sampling rate difference is large, the matching filters discussed above will often correct 
disturbances caused by desynchronization. When the rate difference is small, the receiving objects must be 
scheduled to run after the sending object. To deal with this problem, a pair of synchronized connectors may 
be used.  The classes are called SyncOut and SyncIn. They are substituted for the InpConnector and 
OutConnector described above. The memory management of the connection works as shown in Figure 6. 
 
When synchronized connectors are used, the sender runs normally on a sequence controlled by its 
scheduler. The SyncOut connector is usually placed last on its sequence so it will run later than objects that 
generate output signals it will carry. When the SyncOut connector runs, it sends a trigger signal to its 
associated SyncInp connector using shared memory. The SyncInp connector is configured to control its 
parent sequence. The scheduler will defer execution of this sequence until the trigger arrives. All dataflow 
objects that depend on data from the SyncInp are placed later on the sequence, insuring that they run after 
their data samples arrive. 

Dataflow in distributed systems 
When processors are distributed on a network, data flow connections are made using reflective serial 
memory hardware such as the SysTran SCRAMNet (7).  SCRAMNet connections are managed exactly like 
shared memory connections. 

Time sampled data types 
Data flow signals may be time-sampled integer, Boolean or floating point values. Vector valued 
connections are supported through terminal array types. Boolean-valued signals are used with logic gates 
and digital I/O hardware to perform the functions of a programmable logic controller.  Many signal 
processing objects have a mixed set of terminal types. 
 
Examples: A Boolean input terminal is often used to pause or resume the main signal processing path 
through a filter. Limit detectors have a Boolean output that becomes True when the input floating-point 
signal is out of bounds.  Floating-point vector signals are used extensively in six degree of freedom robot 
and platform controllers. 

The COOPS class hierarchy 
A typical COOPS application contains hundreds of classes. The following outline displays only a 
representative subset. Additional class documentation is presented in (11). 
 

Foundation classes    Filters 
Object     FIRFilter 
Class     IIRFilter 

       AdaptiveFIRFilter 
Data structures     LowPass 

List      HighPass 
Dictionary     Notch 
Association     LatticeFilter 
Array     SampleHold 

      Rate matching filters 
       UpSampler 
Rate Monotonic Scheduling    DownSampler 

Clock       
Scheduler    Servos 
Sequence     PIDServo 
Task     TVCServo 
DSPObject     PolePlacementServo 
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Data Acquisition    Function generators 
DAQBuffer     RampFg 
CircularDAQ    CyclicFg 
ScopeBuffer     RandomFg 
MatlabDAQFile    RandomPeriodFg 

 
Dataflow connections 

Terminal    Limit detectors 
IntTerminal     PeakPicker 
FloatTerminal    FloatLimit 
OutConnector    IntLimit 
InpConnector    DynamicLimit 
SyncInp 
SyncOut 
 

Logic Gates 
       AndGate 
Interprocessor messaging    OrGate 

Link       
Message    Modeling 
Uplink     Mass 
Downlink     MassInverse 
UpSocket     Jacobian 
DownSocket     InverseTransform 
UpShare     Actuator 
DownShare     Inverse Actuator 

  
Transformations    Hardware interface 

ScalarTransform    DigitalInput 
VectorTransfom    DigitalOutput 
Matrix     AnalogInput 
LinearSwitch     AnalogOutput 
LinearDemux    

Alltalk 
Alltalk implements the graphical user interface for Schema applications. Alltalk also supplies the 
interactive programming and debugging environment for COOPS. Alltalk implements classes, metaclasses, 
methods, and messages using a block-structured syntax similar to Modula II or Ada. 

Key features of Alltalk: 

Portable 
Alltalk is implemented entirely in ANSI standard C to achieve the greatest possible portability. Alltalk runs 
under most versions of Microsoft Windows, including WindowsCE for handheld devices. Versions for 
Macintosh and all Linux and Unix workstations that use X-Windows are also available. An application 
written in Alltalk will run without modification on any supported system. 
 
Interactive 
Alltalk programs can be modified and extended at any time. There is no modal distinction between 
developing and running a program. Interactive programming in an object-oriented environment has proven 
exceptionally effective for rapid prototyping. (13) 
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Self reflective 
All the programming tools such as browsers, inspectors & debuggers are written in Alltalk and are part of 
every application. Classes that describe the execution and compiler variables are part of the environment. 
This information is a key asset for implementing transparent communication between Alltalk objects on 
networked computers. 

Deterministic memory management 
Alltalk programs rely on dynamic memory allocation and deallocation to support interactive software 
development and modification.  Alltalk also employs the Pile memory architecture used by COOPS.  The 
performance gained by this technique is substantial: Languages such as Smalltalk that employ reference 
counting garbage collection use up to 30% of the processor to handle this feature. (8)  Languages that use 
scanning garbage collection have behaviors completely unsuited to a real-time application: They stop 
responding to the user interface for unpredictable time intervals. 

Message expression syntax 
Alltalk messages are implemented using ‘dots’ to separate message selectors from objects. Using the color 
example discussed above, a message to change the color of an object stored in the variable x has this form:  
 

x.setColor[red] 
 

As in COOPS, methods for setColor may exist in several classes. The runtime binding strategy searches for 
the proper method staring in the class of the receiver object and working up through all the superclasses. 
The search is optimized by a cache, which greatly reduces the overhead for message binding. 
 
The left to right order of Alltalk expressions make them more attractive for many expressions involving 
objects and messages. For example, the data flow connection expression discussed earlier take this form in 
Alltalk: 
 
 fg.out.connect[servo.inp] 
 
This expression illustrates cascaded messages: the result of fg.out (an OuputTerminal) becomes the receiver 
of the connect message which has the input terminal returned by servo.inp as an actual parameter. 
 
Most developers prefer to configure the entire COOPS network using Alltalk rather than programming in C 
language level in COOPS. 

Transparent distributed object communication 
Alltalk programs can interact transparently with objects created on other systems in the Alltalk or COOPS 
environment. When an object reference is exported, the local address is compressed to make room for a 
node number that uniquely identifies the system where the object was created. The resulting bit pattern is 
made an instance of class RemoteObject. Class RemoteObject implements a method for undefined, but no 
other methods. Consequently, all messages directed to an instance of RemoteObject are handled by the 
method for undefined. The message receiver’s bit pattern contains the node number, which is used to find 
the appropriate Link to the remote system. Class Link contains all the mechanisms for formatting and 
transmitting a message to a remote processor. When the remote system receives the message, the receiver 
object is transformed back into a local address. Any actual parameters for the message are also transformed 
into local objects if their node numbers match that of the local system. 
 
System State Preservation 
Alltalk applications have automatic support for saving and restoring the state of complex object networks. 
Although Alltalk messages can directly manipulate remote objects, it is a common practice to introduce a 
set of local Alltalk classes that mirror those found in the COOPS environment. These mirror classes are 
called models, because they are used to construct a complete description of how the real-time network is 
configured. All messages that modify the state of a remote COOPS system pass through the models where 
information needed to restore the state of the remote system is cached. 
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When Alltalk is used to create a prototype GUI for demonstration purposes, the model layer remains part of 
the prototype. When users operate controls on the GUI, the models are modified. When no COOPS system 
is attached, the models simply record changes to the state information. When a COOPS system is attached, 
the changes are passed through to the remote system.   
 
The entire hierarchical model layer may be written to a file using a general object pacification mechanism. 
These files are the ‘documents’ created by an Alltalk application. When the file is read, the state of all the 
model objects is restored. The models then update the remote COOPS system so they reflect the new state. 
This procedure is used record all the calibration, turning and configuration information for the COOPS 
network. Because the remote COOPS system usually a machine controller, it is often call the machine.  
Figure 7 illustrates the relationship between the view, model and machine environments. 
 

 

 
 

FIGURE 7 View-Model-Machine relationships. 
   
International language support 
Alltalk applications support dynamic language translation. A menu selection is used to choose one of 
several supported languages. All graphical user interface elements that contain text instantly change to 
display the selected language, resizing and repositioning themselves as necessary. This is a valuable feature 
when training because the teacher and student can switch between their native languages while the 
application is running. 
 
Developers write applications in their native language. A data file is then created automatically that 
contains all GUI display text in the native language. A bilingual translator edits this file by adding 
appropriate translations for each phrase.  Any number of translations can be created and included with the 
same application. 
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The Alltalk class hierarchy 
A subset of the Alltalk class hierarchy is presented below to suggest the breadth of features provided: 
 

Foundation classes    Graphics Support 
Object     View 
Class     Image 
Method     FillView 
Selector     FrameView 
Context     Event 

       Control 
Files      Font 

Directory 
File     Display text 
StringFile     Text 
BinaryFile     DynamicText 
SerialFile     Paragraph 
BinaryRecord    EditParagraph 
Socket     Translation 

 
Data structures    Buttons 

Dictionary     Button 
Association     BoxButton 
List      NameButton 
Array     ImageButton 
ByteArray     CheckBox 
String     RadioCluster 
WideString     
Literal    Signal manipulation 
WideLiteral     NumberDisplay 
RealArray     NumberControl 
IntegerArray     SignalDisplay 

       SignalControl 
Programming tools     BarSignalDisplay 

Browser     Scope 
Workspace     Trace 
Inspector     Knob 
Listener     CircularKnob 

  
Windows     Remote object models 

Window     Model 
ViewWindow    ModelArray 
Panel     AliasModel 
CrtWindow     Parameter 
ModalDialog     RemoteParameter 
ModalConfirm    RemoteObject 
ModalGetParam    RemotePort 
ModalNotifier    Processor 

 
Menus     Networked objects 

Menu     Node 
MenuBar     Link 
PopUpMenu     RemoteThing 
ComboBox 
RadioCluster 
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Alltalk GUI Gallery 
The following windows are examples of programming tools and user interface panels from a typical Alltalk 
application. (The NADS motion controller) These panels are presented to show how the Alltalk GUI looks 
to the end users and developers.   
 
The Browser, Figure 8, is used to inspect or modify any Alltalk class. The upper left window pane shows a 
list of all classes. The upper right pane displays all the method selectors implemented by the class. The 
lower large pane shows the source code for the class. More details about the Alltalk development tools are 
found in (9). 
 

 
 

FIGURE 8 The Alltalk browser. 
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The Inspector, Figure 9, is used to examine the state variables of any object. Selecting any object displayed 
in the inspector view will ‘open’ that object to display a new view. 
 

 
 

FIGURE 9 An object inspector. 

 
The ScopePanel, Figure 10, is a simple two-channel oscilloscope. The component buttons, displays and 
text are all instances of other Alltalk GUI classes: 
 

 
 

FIGURE 10 A two channel oscilloscope panel. 
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Transfer functions can be measured by specifying signals on any pair of terminals. The Transfer Function 
Estimator, Figure 11, uses an FFT to determine the magnitude and phase of the transfer function. 
 
 

 
 

FIGURE 11 Transfer function estimator configuration. 
 
 
Once configured, the transfer function can be observed on the Frequency Response Function Plotter, 
Figure 12.  The plots can also show the power spectral density of the signal of the input or output signals.  
Other menu options (not shown) allow the user to display the transfer function of any digital filter in the 
system. 

 

 
 

FIGURE 12 Transfer function display. 
 
 

 

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).



18 

Washout filters are specialized high pass filters used in driving simulators to keep the motion base centered 
in the room while simultaneously providing the driver with appropriate inertial cues. The panel shown in 
Figure 13 is used to adjust the washout parameters for the TARDEC and NADS driving simulators. Details 
about the NADS washout filter and its adjustments are presented in (10). 
 
 

 
 

FIGURE 13 Washout filter tuning. 

 

DRIVING SIMULATOR APPLICATIONS 
The motion control problem for driving simulators has many demanding requirements where Schema has 
proven effective: 
 
Driving simulators are large real-time applications that must integrate large numbers of sensor and actuator 
channels on physically distributed computers. Because Schema supports distributed dataflow processing, 
the hardware for hundreds of signal converters may be located on multiple computers placed close to the 
actuator arrays they control.  
 
Accurate high-bandwidth servo control on multiple synchronized degrees of freedom are required to 
implement the motion subsystems. Schema uses closed loop servo control in degree-of -freedom space, 
rather than on individual motors or actuators. Kinematic transformations to and from actuator space are 
computed continuously in the controller. This strategy has numerous advantages for tuning and operating 
the motion base. (15) 
 
Minimum phase delays between driver initiated command and motion response. 
The payload is stabilized with a multi-variable feedback controller. A parallel feed-forward model predicts 
the required actuator and motor commands. This strategy has proven very effective in minimizing phase 
delays in the control system. (16) 
 
The controller must deal with non-linear plant characteristics:  The moving configuration of actuators and 
payload determines a dynamically changing plant transfer function. The feed-forward part of the Schema 
controller contains a non-linear inverse model of the actuator-motor-payload system. This inverse model 
consists of a rigid body component and a hydraulic component. The rigid body inverse model predicts the 
forces required to move the payload allowing for all inertial effects and the variable orientation of the 
actuators. The inverse hydraulic component predicts the valve openings required to obtain the required 
actuator motion. 
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Safety and reliability are critical because simulators have human drivers. Schema addresses safety and 
reliability in several ways: Limit detectors monitor all safety critical parameters in the controller. 
Responses to out-of-bounds conditions on any signal are configurable to provide a warning, arrest the 
motion of the platform, or perform a complete power shutdown. Integrated time domain and frequency 
domain analysis tools make it possible to explore and verify controller stability throughout the envelop of 
motion. 
 
The most important contribution to safety is the stability of the software component base. Because Schema 
controllers are constructed using classes that have evolved through use in diverse applications, they have 
become highly reliable. Conventional single-step source code debugging is rarely done because code 
defects at this level have been eliminated.  The process of programming in Schema consists of constructing 
the appropriate data flow diagram and tuning the resulting system while examining signals. Graphical 
oscilloscopes, meters and signal analysis tools are the most commonly used tools: The debugging and 
development process resembles electronic prototyping where the circuit and component values can be 
modified while the circuit operates. A detailed analysis of software and hardware safety issues for a driving 
simulator is presented in (17). 
 

Driving simulators that use Schema 
Schema has been used for several recent simulator projects: TARDEC, NADS, Ford, and VTI. All of these 
systems have embedded COOPS motion controls integrated with Alltalk. The TARDEC system also uses 
COOPS for high-level system configuration and data flow between subsystems.  
 
The following sections provide a brief overview for some of these applications. 
 

The TARDEC/TACOM tank simulator 
The tank-driving simulator at TARDEC/TACOM is a large Schema application. There are two motion base 
systems: one for the tank driver, Figure 14, and one for the turret crew, Figure 15. The turret motion base 
supports a real tank turret. When simulating a tank, the system operates both platforms in parallel as one 
vehicle. It is also possible to configure either motion base as an independent vehicle. 
 
Each motion controller contains: 
 

• 64436 Objects 

• 514 Data flow objects 

• 3608 Terminals 

• 5027 Parameters 
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The COOPS object network runs on two PowerPC processors: One for servo control and one for the 
washout filter and safety monitor. Additional information on the architecture and operation of the 
TARDEC motion controller is available in (18). 
 
 

 
 

FIGURE 14 The TARDEC tank driver’s motion base. 
 
 

 
 

FIGURE 15 The TARDEC tank crew motion base. 
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The TARDEC simulator uses COOPS for high-level system configuration and scenario management as 
well as dataflow between the subsystems.  The motion controller hosts are Windows NT machines. All 
other subsystem hosts are Unix workstations. Figure 16 shows the simulator architecture. 
 
The simulator can participate in DIS Net battle simulations with crews driving on remote simulators. Each 
participant can see the other tanks and try to blast them out of existence. (Simulated shocks and explosions 
only.) 
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FIGURE 16 TARDEC driving simulator architecture. 
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NADS Motion Controller 
The National Advanced Driving Simulator has a Schema controller for a hexapod motion base mounted on 
an X-Y carriage. (See Figures 17 and 18.) 
 

 
 

FIGURE 17 NADS Testing at MTS. 
 
 

  
 

FIGURE 18 NADS at the passenger dock. 
 
The NADS motion controller runs COOPS on distributed PowerPC processors with an Alltalk GUI running 
on a Windows NT host. Four PowerPC subsystems are placed near the motors or actuators they control, all 
subsystems are linked using SCRAMNet shared memory. 
 

1. Command generator and washout filter 
2. Hexapod controller 
3. X crossbeam controller 
4. Y carriage controller 
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The Schema environment for the NADS motion controller contains: 
 

• 72,245 objects 

• 650 Data flow objects 

• 3500 Terminals 

• 4375 Parameters 

 
Scenario management and system configuration is handled by software from TRW. 
 
The washout filter for NADS is designed to apportion all translations to the X-Y carriage. Tilt coordination 
and vertical motion are handled by the hexapod. A turntable on the platform is used for yaw motion. Figure 
19 shows the top-level dataflow diagram for the washout filter. Figure 13 shows the control panel used to 
adjust the filter parameters. 
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FIGURE 19 The NADS washout filter. 

 
A review of the NADS controller is presented in (15) and (16). The architecture and operation of the 
controller is covered in great detail by (10).  
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Ford VIRTEX Driving Simulator 
The Ford “Virtual Test Track Experiment” (VIRTEX, Figure 20) uses a Schema motion controller running 
on a single PowerPC processor.  Ford Research Laboratory developed all other aspects of the simulator 
software. 
 

    
 

FIGURES 20a, 20b Ford VIRTEX motion base and dome. 

 

VTI Driving Simulator 
The Swedish National Road and Transportation Research Institute, Figure 21, has developed and operated a 
pivoted motion base for several years. Recently, the institute has added a linear degree of freedom based on 
the NADS motion base technology using a motor driven metal belt and a carriage with hydrostatic 
bearings. This system uses Schema only for the linear controller. 
 
 
 

 
 

FIGURE 21 VTI Conceptual drawing with cab. 
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The new VTI simulator is currently being assembled and tested in Sweden, Figure 22. 
 
 

 
 

FIGURE 22 VTI Linear motion base. 

FUTURE WORK 

Data flow diagram editing 
Currently, scripts written in Alltalk create Schema dataflow graphs. This is somewhat archaic because 
previous MTS data flow systems used integrated graphical diagram editors. (12) The next major release of 
Schema will support interactive editing of the diagrams. 

Integration with Matlab/Simulink diagrams 
Many end-users want to incorporate Matlab or Simulink models with COOPS controllers. A currently 
funded development program will add this feature to our next generation earthquake simulators. Upon 
completion, this capability will be part of the generic Schema toolkit.  

Interconnected rigid bodies (joints) 
The forward and inverse rigid body models used with the hexapod controllers can handle arbitrary actuators 
connected to a single rigid body with arbitrary inertia. In order to handle interconnected rigid bodies, joint 
models for common connections are being developed for Schema. Several researchers have described 
frameworks that deal with kinematics and dynamics in an object-oriented framework. (19) 

Flexible body models using modal analysis 
Vibration modes are currently handled ad-hoc by adding hand-tuned resonators and anti-resonators to the 
control loop. This is currently done in degree-of-freedom space and is only accurate for small 
displacements from the home position of the payload. By measuring the normal modes of the payload and 
incorporating them into the generic inertia model, we hope to obtain better compensation for all payload 
orientations. 

NADS & Simulation Center
Proceedings of the 1st Human-Centered Transportation Simulation Conference, The University of Iowa, Iowa City, Iowa, November 4-7, 2001 (ISSN 1538-3288).



26 

Improved hydraulic controls 
The inverse hydraulic models used in the current driving simulators and shock controllers (20) have been 
extended to include several non-linear effects due to oil compression flow, large actuator displacements and 
asymmetric actuators. Updated models and inverse models have been developed with Simulink and will be 
part of future Schema systems. 

Large scale distributed systems using Internet II 
The University of Nevada Reno has obtained an NSF grant for the NEES program: “Network for 
Earthquake Engineering Simulation”.  Several features will be added to Schema for this program including 
broadband audio and video channels for teleoperation and many new error recovery and fault tolerance 
features. 
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