
Techniques to Synchronize and Align Driving 
Simulator Data 

Kari Torkkola, Bob Leivian, Noel Massey, Chris Schreiner, Mike Gardner, and John 
Summers 

Motorola Labs, MD DW286      

2900 South Diablo Way        

Tempe, AZ 85282 USA 

Email: <firstName>.<lastName>@motorola.com 

Abstract 

We describe techniques used to overcome issues encountered in collecting and aligning driving simulation data 
recorded from multiple devices.  Driving simulators offer the ability to monitor the driver, vehicle, and environment 
in situations and in detail that are impractical for roadway vehicles, but the data is often collected from various 
independent asynchronous data recording devices.  Even when all subsystems properly collect data there exists a 
high degree of probability that the various data files will not be time aligned, thus resulting in misinterpretation of the 
data which then results in faulty conclusions about driving behavior or algorithms. We describe a data 
synchronization mechanism and a multistage alignment process whereby data from various subsystems is aligned in 
a two step process: rough alignment and then optimal alignment within milliseconds.  Optimal alignment uses a 
variation of the dynamic time warping (DTW) algorithm resulting in a single data file (plus video). We present 
results of the alignment process on driving simulator data and also describe an automated data validation technique to 
ensure the integrity of collected data. 
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The Motivation for Driving Simulator Data 
Driving simulator data is critical to the development of future smart automobile systems.  
Automotive workload managers and other context aware driver assistance systems need 
to infer the state of the current traffic or the driving situation and the state of the driver. 
There are at least two approaches to construct such a system. The first is more or less 
heuristic; coding rules of thumb that map the car sensor readings into some meaningful 
driving states.  While this may result in a usable system, the scope of such an approach is 
limited. Covering many situations becomes tedious, and plain common sense is often 
insufficient to adequately describe the situation.  
 
The second approach, which we advocate, is deriving these context aware driver 
assistance systems directly from collected sensor data using statistical machine learning 
techniques [1,2]. For example, learning to classify different driving situations requires 
collecting sensor data of those situations, training or learning models of the situations 
from the data, and then classifying incoming new sensor data streams using the models. 
This approach parallels the development of automatic speech recognition systems, which 
did not become possible until large public databases were collected and data-driven 
methods were applied to model the speech signal [3]. 
 
There are two approaches to collecting large databases of driving sensor data from 
various driving situations. One can outfit a fleet of cars with sensors and data collection 
equipment, as done in the NHTSA 100 car study [4]. This has the advantage of being as 
naturalistic as possible. However, disadvantages are that potentially interesting driving 
situations will be extremely rare and collected data will be limited to the state of sensor 
technology at the time. Realistic driving simulators provide much more controlled 
environments for experimentation. Furthermore, in a driving simulator, it is possible to 
simulate a large number of potential advanced sensors that would be too expensive or 
impossible to install in a real car yet.  This will also enable us to study what sensors 
really are necessary for any particular task and what kind of signal processing is needed 
for those sensors [5].  
 
A further advantage of such a collected database is its potential to produce statistical 
insight to normal driving. One aim is the discovery of unexpected relationships from the 
driving data using typical data mining tools. Not only the amount of data, but also the 
richness of the sensor set will make this feasible. We call this kind of data "hypervariate". 
 
This paper concentrates on the issues in collecting the data from a driving simulator. First 
we describe our simulator environment and its various subsystems. We outline the details 
and issues in data synchronization and alignment in order to create useful databases. 
Finally, we briefly describe data annotation, which is a necessary step in making the data 
useful for machine learning. 

Driving Simulator as a Data Source 
We collect data in a driving simulator lab, which is an instrumented car in a surround 
video virtual world with full visual and audio simulation (although no motion or G-force 
simulation) of various roads, traffic and pedestrian activity. The driving simulator 
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consists of a fixed based car surrounded by five front and three rear screens. All driver 
controls such as the steering wheel, brake, and accelerator are monitored and affect the 
motion through the virtual world in real-time. Various hydraulics and motors provide 
realistic force feedback to driver controls to mimic actual driving. 
 
The basic driving simulator software is a commercial product by DriveSafety with a set 
of simulated sensors that, at the behavioral level, simulate a rich set of current and future 
onboard sensors in the near future. This set consists of radar for locating other traffic, a 
GPS system for position information, a camera system for lane positioning and lane 
marking, and a mapping data base for road names, directions, locations of points of 
interest, etc. There is also a complete car status system for determining the state of engine 
parameters (coolant temp, oil pressure, etc.) and driving controls (transmission gear 
selection, steering angle, window and seat belt status, etc.).  
 
An expanded set of sensors is provided by the Driver Advocate (DA) subsystem. DA is a 
software state machine and a set of virtual sensors that monitor the virtual world of a 
DriveSafety driving simulator. The DA constantly monitors the environment, car 
position, traffic situation and gives ‘advice’ to the driver in real-time about ‘problems’ in 
that environment. This is facilitated through custom software, DA Sensor Protocol, 
(DASP) which interfaces to the DriveSafety simulator’s virtual world.  DASP is an 
efficient means to gather only the relevant positional and traffic data feedback from the 
simulator necessary to determine the appropriate DA advice to the driver.  This advice is 
output through another set of customized interface software using audio, visual and/or 
tactile feedback.  The style and presentation of this feedback is based on the individual 
driver’s preferences and learned habits.  It is designed to inform the driver of problem 
situations and to elicit a desired response. For example, if the driver is too close to the car 
in front, a ‘virtual brake light’ could be flashed in the virtual conformal Heads Up 
Display (DA HUD).  DA HUD is more custom software that allows the visual alerts of 
DA to be presented on the DriveSafety simulator screen in the correct visual perspective 
view of the driver to the virtual world in front.   
 
In addition, our simulator setup also has several video cameras, microphones and a 
SeeingMachines infrared eye/head tracker to record all driver actions during the drive 
that is synchronized with all the sensor output and simulator tracking variables. 
Altogether there are 425 separate variables describing an extensive scope of driving data 
- information about the car, the driver, the environment, traffic, and associated 
conditions. An additional screen of video is digitally captured in MPEG2 format, 
consisting of a quad combiner providing four different views of the driver and 
environment (See Fig. 1). Combined, these produce around 400Mb of data for each 10 
minutes of drive time. This allows a complete analysis of virtually everything that occurs 
during a drive. 
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Figure 1. An example of captured video. 
 
 

Data Alignment and Synchronization 
Each experiment collects data from the three major subsystems plus video running on 
separate computers. The subsystems are 1) Driver Advocate, 2) the DriveSafety 
simulator, and 3) the SeeingMachines eye/head tracker. All these independent data 
recording devices are running asynchronously. These subsystems may improperly record 
data due to a variety of reasons, and it is costly in terms of subject time, experimenter 
time, simulator time, and potentially financial resources to run a series of experiments 
which result in unusable data.  Even when all subsystems properly collect data there 
exists a real problem that the interpretation of this data depends on the ability to time 
align the various data files.   Thus synchronization and alignment of data is essential. 

Subsystem Alignment 

Collecting simulated driving data involves collecting data from many sensors, various 
systems, and a mixture of real and simulated input at many different sampling rates. This 
requires a system for converting data to a common format, and a method for time 
aligning data samples from all three data collection subsystems. The first step in using 
any collected data is to either write/buy a large set of tools to handle each input source to 
do all this, or write a single tool set with a set of converters for all input sources. We 
chose the latter, creating in-house a tool that accomplishes data alignment and 
synchronization. This requires a common data format. We chose an event stream based 
format rather than the fixed sampling rate or spreadsheet model to allow more generality 
and smaller file sizes. With an event stream model (individually time-stamped, above 
threshold value changes) all information is preserved and it is easy to resample at any 
given rate if needed. This is particularly helpful in aligning simulated data with real 
world data which is typically asynchronous with varying propagation delay.  
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By sending a ‘sync’ command to all subsystems at various times during the experiment, 
rough alignment can be achieved during the process of converting the data to a common 
form.  The rough alignment is accomplished by first assuring that the individual data 
capturing elements are running a clock synchronization utility (such as NTP), then 
choosing a single element to be the master clock. While this should theoretically provide 
a high degree of time alignment as long as the real time clock from the data capturing 
element is in fact synchronized with the master clock, there are several real world issues 
that limit this capability. Among these issues are the lack of a real time clock or a suitable 
clock synchronization capability in a data capturing element, network or other 
propagation delays, and the potential for software elements beyond our control to not use 
or improperly use the system clocks. We have attempted to mitigate some of these issues 
by working with the subsystem vendors whenever possible to provide appropriate real 
time stamping of data files, and by inserting our own timestamps or artifacts into the data 
files during the ‘sync’ command. The capability to add these ‘sync’ events at the 
beginning and end of the data capture session, and also periodically during the session 
provides a reasonable foundation for the finer time alignment procedures discussed next. 

Dynamic Time Warping (DTW) 

For many data analysis techniques there is the need to normalize the rate fluctuations of 
variables in order to synchronize and compare them in a time coherent way.  For 
subsystems that share common variables, such as the Driver Advocate and Simulator 
both recording vehicle speed, it is occasionally the case that the values of the common 
variables differ due to varying time delays in the data collection systems.  These time 
delays may be caused by hardware processing limitations (‘real-time’ systems 
occasionally becoming overburdened thereby producing non-real time results) or network 
protocols that have various tolerances for information delay.  For example, we discovered 
that the simulator may lose frames in computationally intensive traffic situations and fails 
to adjust the frame time stamp accordingly. This results in a file shorter in time compared 
to data collected from other subsystems. Since these lost frames occur in bursts, it is not 
possible to just linearly adjust the duration of the file.  
 
In order to perform a fine-grained non-linear time alignment we resample all data at a 
common sampling rate and then use the well known technique of Dynamic Time 
Warping (DTW) [6]. DTW searches the space of mappings from the time sequence of the 
input stream to that of the reference stream, so that the total distance is minimized. This is 
illustrated in Figure 2. DTW thus allows the normalization of sequential variable patterns 
to a common time index, and compensates for both inaccuracies in our rough subsystem 
alignment, and for delays incurred by the data collection processes. We chose to use the 
system clock on the Driver Advocate subsystem as the reference stream, because the 
Driver Advocate system was designed in-house, was the least computationally intensive 
of the three subsystems and therefore less likely to encounter time delays caused by 
processing issues, and because Driver Advocate can be used to capture and process data 
from real-world environments.  
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Figure 2. Illustration of the Dynamic Time Warping. Two sequences, test and reference, 
are aligned so as to minimize the sum of distances along the alignment path. 

 
 
What makes the alignment possible is the fact that we have some common variables both 
in DA and Simulator files. The set of those common variables in the DA file becomes the 
"reference" stream, and the same variables in the Simulator file become the "test" stream 
that is aligned to the reference. Since collected files may be long in duration, it was 
necessary to modify the standard DTW for block-by-block operation. The modified DTW 
aligns a block of fixed length of data first, then backs off a little, aligns the next block, 
and so on. The same procedure is applied to common variables between SeeingMachines 
log file and the DA file. This blockwise alignment is illustrated in Figure 3. 

Scrubbing 

After the Simulator and Eye-Tracker event streams are aligned to the DA stream by 
DTW, a heuristic set of scrubbing and ‘sanity checks’ can be preformed to detect and 
possibly correct various undesired sensor behaviors.  Typical undesired behaviors include 
sensor drifts due to aging or temperature, constant ‘stuck at’ values, oscillatory values, 
and missing data due to either faulty connection to the sensor or faulty data collection 
tools. We created a parameter validation table whereby each parameter represents a row 
and each column represents a validation type (such as maxValue, minStandardDeviation, 
etc).  The validation types are currently simple statistical measures, though it is 
conceivable that they could be used to specify parameters for more sophisticated models 
such as those based on clustering or prediction algorithms. If a parameter does not have a 
meaningful validation value then that cell in the table can be left empty.  We created tools 
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Figure 3. Blockwise alignment of long data files. Vertical axis (from bottom to up) is 
time in the reference data (DA), horizontal axis (left to right) is time in the Simulator 

data. Color code illustrates the Euclidean distance between samples, dark color denotes 
small distance, and shades from red to yellow to white denote increasing distance. DTW 

attempts to find an alignment path as "dark" as possible through this distance matrix 
(Insert in bottom right is enlargement of a single block showing DTW alignment path). 

 
to read this table and ensure that any given data set does not violate any of the validation 
parameters listed in the table. These ‘sanity checks’ can be performed immediately after 
an  experiment  has  concluded  and  can  provide  early  alerts  of system malfunctions or 
improper configurations before additional experimenter and subject time is wasted due to 
inadequate data collection. 
 
In addition to the automatic validation of the data we visually inspect the data to ensure 
its integrity.  The visual inspection involves plotting the time series data, looking at 
histograms of data and possibly inspecting frequency analyses of the data. This step is 
included in the data collection process since appropriate visualization of the data can lead 
to rapid detection of gross errors that might be difficult to automatically detect, such as 
intermittent oscillations. 
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Anomaly detection  

At this point in the process all of the data is now aligned and synchronized. Additionally, 
we have validated that the values and several statistics of the data are within acceptable 
ranges.  We now can run various physics models and other behavior-based models to 
validate that the sensors are only giving us changes that are physically possible.  These 
models are typically more complex than the generic data scrubbing techniques and also 
require specific domain knowledge. These models are built both on an understanding of 
vehicle dynamics (minimum turning radius, relationship of brake pedal position to 
deceleration, conservation of momentum) and of human movement (eye position 
constrained by head angle, normal rates of steering wheel movement).   

Data annotation 
The data is now ready to be used, either for data mining or machine learning purposes. 
We describe now briefly the additional steps necessary to make the data useful for 
machine learning purposes. 
 
We developed a special purpose data annotation tool for the driving domain. This was 
necessary because available video annotation tools do not provide a view of the sensor 
data, and tools meant for signals, such as speech, do not allow simultaneous and 
synchronous playback of the video. The purpose of the data annotation tool is to 
manually label the sensor data with meaningful classes. Supervised learning and 
modeling techniques then become available with labeled data [7]. Our annotation tool 
provides an easy to use interface for annotating the data. The major properties of the tool 
are 

1. Ability to navigate through any portion of the driving sequence. 
2. Ability to label (annotate) any portion of the driving sequence with proper 

time alignment 
3. Synchronization between video and other sensor data (note that the earlier 

alignment and synchronization efforts did not include the video) 
4. Ability to playback the video corresponding to the selected segment 
5. Ability to visualize any number of sensor variables. 
6. Providing persistent storage of the annotations 
7. Ability to modify existing annotations 

 
Since manual annotation is a tedious process, we are working on automating parts of the 
process by taking advantage of classifiers trained for various driving maneuvers [8]. 
Annotation becomes then an instance of active learning [9]. Only if a classifier is not very 
confident in its decision, its results are presented to the human to manually verify.  

Conclusion 

A description of techniques used to overcome issues encountered in collecting and 
aligning driving simulation data recorded from multiple devices has been given.  
Described are a data synchronization mechanism and a multistage alignment process 
whereby data from various subsystems is aligned in a two step process: rough alignment 
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and then optimal alignment within milliseconds.  The optimal alignment uses a variation 
of the dynamic time warping (DTW) algorithm resulting in a single data file (plus video). 
Presented are the results of the alignment process on driving simulator data and also 
describe an automated data validation technique to ensure the integrity of collected data.  
Thus misinterpretation of the data and faulty conclusions about driving behaviour or 
algorithms can be avoided. 
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