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Abstract 

Driving simulation includes many elements that must be implemented to produce a useful research, 
assessment or training tool. Given that the physical attributes and cueing environment are appropriate for a 
given application, performance measurement becomes a critical simulation element. Performance measures 
can be crucial to research objectives. Performance measurement is central to tracking and documenting 
training progress. Performance measurement can also provide criteria for diagnostic assessment procedures 
concerning driver capability, qualification and certification. This paper will review various categories of 
measurements, and give examples of typical results. The objective is to lay the ground work for a fairly 
broad view of the measurement of driver behavior and driver/vehicle performance in driving simulators. 
The general thesis of this paper is that performance measurement can be structured and clarified by 
conceptual, qualitative and quantitative models of the driving task. 
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Introduction 

Driving performance measurement can be broken down into several categories.  Simple 
global measures include accidents, tickets, speed limit exceedances, lane and speed 
deviations, turn indicator usage, etc.  This category can also include various measures of 
driver steering, throttle and brake control actions and associated vehicle responses including 
body axis accelerations and velocities.  These measures can be collected during entire 
simulator runs, and can be subdivided into sections of driving scenarios where road geometry, 
vehicle and pedestrian interactions, traffic control devices and other task demands make them 
particularly relevant.  Various algorithms can be applied to these measures including 
distributions and moments (e.g. mean and standard deviation), power spectra, and more 
modern procedures such as wavelet analysis which can quantify time variations. 

More powerful measurement paradigms can be defined where independent variables are 
closely controlled and the measurement algorithm quantifies the relationship between 
dependent variables (i. e., driver response) and independent variables.  For example time 
series analysis methods can quantify the relationship between stimulus and response 
variables.  Fourier analysis procedures have been used to carry out stimulus/response 
relationships, such as steering response to wind gusts and roadway curvature, and speed 
response to varying road grade or lead vehicle speed variations.  These methods allow the 
analysis of driver time delay in responding to stimulus inputs, and the correlation of driver 
response to the stimulus input.  Driver response can also be measured in response to more 
discrete stimuli such as a traffic signals or conflicts with vehicles and pedestrians.  These 
situations can involve steering and/or speed control responses, and can be analyzed in terms 
of driver decision making and response time.  This paper will review various modeling and 
measurement paradigms and algorithms, and give example simulation results and associated 
field test measurements.   

Background 

The measurement of human operator behavior including driving has been pursued for more 
that half a century, and finds its roots in the general problem of modeling the human operator, 
e.g.( 1,  2).  The early work dealt with the stable feedback control of vehicle dynamics in 
general, and a special conference, the Annual Conference on Manual Control, was held for 
over two decades and was devoted to the behavior and modeling of the human operator, e.g. 
( 3,  4).  Figure 1 generally illustrates the driving task.  This conceptual model portrays several 
issues associated with modeling and measuring performance of the driving task.  The driver 
controls a vehicle, and this feedback process must be stable in a closed loop sense.  Theories 
of linear feedback control have been applied to this problem, and a range of models have 
been proposed, e.g. ( 5), that deal with stability either structurally, such as classical stability 
analysis ( 6,  7) or algorithmically with procedures such as optimal control ( 8- 10).  These two 
approaches raise the general issue of the computational procedures used in driver 
measurement, which can involve typical data analysis, and modern techniques such as 
wavelets, e.g. ( 11).  Higher level characteristics can be ascribed to the human operator, e.g. 
( 12,  13), and in fact cognitive functions such as risk perception, decision making and 
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situation awareness factor strongly into the driver’s reaction to environmental inputs such as 
traffic, traffic control devices, and hazards in general. 

Generally, driver models and measurements can be broadly categorized according to control, 
guidance and navigation functions.  Control concerns psychomotor functions that stabilize 
vehicle path and speed against various aerodynamic and road disturbances.  Guidance involves 
perceptual and psychomotor functions coordinated to follow delineated pathways, adhere to 
implied speed profiles, interact with traffic and avoid hazards.  Navigation involves higher 
level cognitive functions applied to path and route selection and decisions regarding higher 
level traffic interactions (e.g., avoiding congestion).  A generic model for guidance and control 
functions is illustrated in Figure 2.  This model allows for the human operator to respond to 
disturbances and commands and can apply broadly to the guidance and control of aeronautical, 
marine and land vehicles, e.g. ( 14).  The driver operates in both compensatory and pursuit 
modes.  The compensatory mode relates to nulling out errors such as lane or speed deviations.  
Pursuit behavior arises when the human can perceive commands independently of errors, for 
example road curvature ( 15).  An additional feedback has been added to Figure 2 to account for 
the driver’s perception and response to vehicle motions and steering torque.  Through 
vestibular and proprioceptive feedbacks the human operator can also respond to vehicle 
motions and control system forces that may be important in limit performance maneuvering, 
e.g. ( 1). 

 

Environment

Driver Vehicle

Traffic/Pedestrians

Motions and State

Road
Profile

Road
Elevation

 
Figure 1.  Basic Driving Task Model Figure 2.  Human/Machine System Model 

Continuous Control of Steering and Speed 

The human operator's compensatory behavior is designed to minimize error and also to 
maintain control stability.  This behavior can be somewhat complicated, including anticipatory 
and smoothing compensation for vehicle dynamics characteristics.  If we consider the 
combined behavior of the human operator and vehicle, however, compensatory behavior in 
manual control systems has been compactly characterized by two parameters, a gain or 
crossover frequency (ωc) and a time delay (τe) ( 16).  In Laplace transform terms, the open loop 
transfer function in the Figure 2 compensatory loop can be expressed as: Y Y e sp c c

se• = −ω τ / . 
In the crossover model characterization of manual control system dynamic behavior, crossover 
frequency is a measure of the system (driver/vehicle) bandwidth, and the product of crossover 
frequency and time delay is a measure of system damping:  Crossover Frequency (bandwidth) 
= ω c  and Phase Margin (system damping) = φ π ω τm c= − ×/ ( (2 rad / sec) sec)e .  System 
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damping decreases with decreasing Phase Margin, and when Phase Margin goes much below 
unity, the system response is oscillatory.  When Phase Margin goes to zero, the system 
becomes unstable.  A well known unstable phenomenon occurs in aeronautical (pilot/vehicle) 
systems, e.g. ( 17), and has its equivalent in driving when tire saturation causes unstable control 
of vehicle yawing. 

The above crossover model has been applied to measurements for the steering control task in 
simulators and test vehicles ( 18) and also to test vehicle measurements for a headway 
(longitudinal) control task ( 19).  Crossover model parameters from these steering and headway 
control studies are summarized in Figure 3.  These measurements clearly distinguish the low 
bandwidth longitudinal control from higher bandwidth steering control and between fixed base 
simulator and moving base test vehicle steering control.  Here we see that there is almost an 
order of magnitude difference in the bandwidths and equivalent time delays between the 
headway control and steering control.  The low bandwidths in headway control are basically 
due to longitudinal vehicle dynamics, including available engine power, and the driver’s 
perceptual response of headway.  Driver headway time delay is also larger for the open road 
measurements where the car 
following task is less well defined 
and more variable.  For steering 
control we see that fixed base 
simulator bandwidth is about half 
of that found in a real test vehicle.  
This effect is due to the motion 
and steering force feedback cues 
that the driver perceived in the 
real vehicle which allows for 
higher bandwidth control of the 
vehicle. 

Figure 3. Crossover Model Behavior 

Measurement applied to original 
time histories can be carried out with Fourier analysis techniques, e.g. ( 6,  15,  16,  18,  19).  
This approach has been used in simulation studies to characterize the behavior of cognitively 
impaired drivers ( 20,  21).  For pursuit control, the driver must have some preview of the 
required path.  This behavior has been studied in person-in-the-loop driving simulations ( 22, 
 23), and driver models have been developed from the experimental data that include steering 
actions directly proportional to roadway curvature.  These models account for driver 
perception of road curvature some distance ahead of the vehicle, and have been characterized 
as incorporating a `look ahead' distance or headway time (distance divided by velocity), e.g. 
( 24). 

Emergency Control 

In real world conditions with various complexities in the roadway environment, there is some 
question about whether a driver will decide to steer and or brake in a given emergency 
encounter.  A simple model for this decision process has been considered based on a rather 
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simple kinematic analysis ( 25) of the task portrayed in Figure 4.  This kinematic model 
considers maximum steering or braking 
maneuvering times as follows given the 
variables defined in Figure 4 where 

Figure 4.  Obstacle Avoidance Task 
Variables for Kinematic Analysis 

x is longitudinal distance, y is lateral 
distance and t is time.  Consider Steering at Constant Lateral Acceleration:  Given that 
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Braking at Constant Longitudinal Acceleration, given that 2
0 0 / 2R xx T U a t= +   and  0
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= , 

then 0 0 0( / 2 )R xx U T U a= +   and  0 / 2m xT U a= .  The results of this model are illustrated in 
Figure 5.  Here we see that, given the maneuvering assumptions in the model, at low speeds the 
driver can safely stop or steer.  At higher speeds 
the stopping distances are long enough that the 
driver can only safety steer. 

Figure 5.  Steer versus Brake Decisions Based on 
Kinematic Analysis. 

Data has been analyzed that relates to the above 
kinematic analysis.  Test track data was obtained 
under conditions where the driver was asked 
maneuver at the last possible moment before 
running into a lead vehicle by either braking ( 26) 
or steering ( 27).  This data has been subsequently 
analyzed using regression analysis ( 28) to 
determine when the driver decides to maneuver in 
terms of the range and range rate ( ,R R ) to a lead vehicle.  The general formula for the 
regression analysis can be expressed as 2R a R b R c= + + .  By dividing through the above 
formula by range rate, R , we obtain the equivalent of the time to collision or maneuver time 
plus driver reaction time illustrated in Figure 5: /R mT T aR b c R+ = + + .   

In the above form of the equation the b coefficient is the equivalent to the total maneuvering 
time in the ( 25) analysis for mid range rate levels, and the a and c coefficients give some 
range rate dependency.  The regression analysis from ( 28) is summarized in Table 1 where 
range and range rate were expressed in meters and meters/sec respectively and range rate was 
expressed as negative (i.e. decreasing range).  The steering analysis was linear while the 
braking analysis included the 2R term.  According to the authors ( 28) the above results 
demonstrate that “drivers initiate last-second braking maneuvers at generally longer distances 
than last-second steering maneuvers to avoid a lead vehicle ahead in their lane of travel.”  
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This is consistent with the kinematic analysis summarized in Figures 4 and 5.  It can also be 
shown that reaction plus maneuvering times for braking are shorter than for steering in the 
hard maneuvering scenarios when range rate is below 14 meters/second (about 43 
feet/second).  The b coefficients in Table 1 are consistent with driver decision/reaction times on 
the order of one second or greater and the a coefficients indicate that the decision/reaction time 
increases with increasing range rate.  Perception reaction times can easily be greater than 1 
second as discussed in ( 29) and decisions made in response to the onset of yellow traffic lights  
have also been investigated ( 30,  31). 

Combined Steering and Speed Control 

The stimuli that motivate general driver steering and braking behavior may not be as 
apparent or direct in their influence as more constrained tasks.  This is somewhat typified by 
car following behavior that exhibits significant between subject variation, e.g. ( 19).  A range 
of stimuli influence driver behavior in general driving, for example warning or advisory 
signs, traffic, pedestrians and other obstacles, road profile, etc.  Speed selection during path 
following in the absence of traffic is somewhat arbitrary, and is one of the least well-
understood elements of driver behavior and modeling.  Much of the detail in modeling and 
measuring the driver’s closed loop feedback process for controlling speed and lane position 
has been described above.  Now we consider combined steering and speed modeling efforts 
applied to relatively free driving behavior. 

The assumptions in the above modeling work have been tested against data obtained in two on-
road studies ( 32).  The assumptions that were supported were that the driver will flatten curves, 
and that a linear control model is adequate for describing steering behavior.  Not supported 
were assumptions regarding consistent preferred lateral acceleration in horizontal curves, and 
consistent preferred longitudinal decelerations and accelerations during curve approach and 
exit respectively.  Driver speed profiles in negotiating curves have been a long term interest of 
behavioral scientists and highway and traffic engineers, e.g. ( 33,  34).  Based on analysis of 
driver speed behavior on 135 rural two-lane highways, a regression relationship has been 
developed ( 35) between driver 85th percentile speed (V85, km/hour) and the independent 
variables of degree of curvature (D degrees), length of curve (L, meters), and total deflection 
angle of curve (I, degrees): 85 102.45 1.57 0.0037 0.10V D L I= − + − .  There is also some 
discussion in ( 35) about accounting for tangent speeds on approaches to curves.  This formula 

Table 1.  Analysis of Stopping and Steering Behavior Relative to a Lead Vehicle. 
Case Regression Analysis 

Maneuver Intensity a b c r2 

Normal 0.05 -3.92 5.0 0.98 Braking-Lead 
Vehicle Stopped Hard 0.11 -1.05 5.0 0.99 

Normal 0.14 -2.54 11.0 0.96 Braking-Lead 
Vehicle Moving Hard 0.13 -1.21 7.5 0.99 

Normal NA -4.08 5.0 0.99 Steering-Lead 
Vehicle Stopped Hard NA -2.54 5.0 0.98 

Normal NA -3.82 4.42 0.95 Steering-Lead 
Vehicle Moving Hard NA -2.56 2.25 0.98 
NA:  Not applicable, the steering analysis was linear 
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and similar relationships developed in the traffic engineering literature could be incorporated 
into the decision process for modeling and measuring driver speed selection.  A thorough 
survey of the traffic engineering literature is probably warranted to get useful information for 
the driver model speed and steering decision processes. 

Decision Making 

There are a variety of circumstances where the driver is confronted with choosing between 
alternative courses of action and has to make a decision under time pressure.  These 
situations might include deciding whether to stop or go at a signal when confronted with a 
yellow light or choosing a gap when turning across oncoming traffic, merging onto an 
expressway or lane changing.  Consider a signal light task that was simulated in both a fixed-
base simulator and an instrumented vehicle on a closed course ( 36).  The signal light timing 
was controlled similarly in both the simulator and field studies.  When the driver was 
approaching the intersection, the signal light was initially green, and at a random-appearing 
time later, the signal turned yellow confronting the driver with a decision to either stop or go.  
Because drivers were motivated to minimize driving time with rewards, there was a strong 
motivation to go.  However, there were also penalties for running a red light, so driver 
decisions were made in the face of rewards and penalties ( 37).  The yellow light interval was 
a constant 3 seconds, and the timing of the light changing from green to yellow was 
controlled as a function of time to the intersection (distance divided by speed) so that 
regardless of approach speed the drivers were faced with perceiving a time interval and 
deciding whether they could legally and safely go or whether they should stop.  Five signal 
timings were randomly presented during drives:  One set to require a sure stop (early yellow) 
and another a sure go (long green).  The remaining three timings ranged from a probable stop 
to a probable go, with the yellow light onset timing ranging from 2.0 to 3.4 seconds to go to 
the intersection as summarized in Table 2. 

Table 2.  Time-to-Go Intersection Timings for Signal Light Decision Making Task 
Simulation Field Test Qualitative 

Probability of 
Going 

TI (sec) Number of 
Encounters 

TI (sec) Number of 
Encounters 

     1. Sure Go 0.0 1-2 0.0 2 
     2. High 2.2 8 2.8 9 
     3. Medium 2.8 8 3.3 8 
     4. Low 3.4 8 4.2 9 
     5. Sure Stop 5.5 1-2 7 2 

Subjects were instructed to behave as they normally would in a driving situation with a 
reasonable motivation for timely progress and a desire to avoid tickets and accidents.  A 
monetary incentive structure was also provided as a tangible and quantifiable motivation for 
performance ( 37).  Objective and subjective performance measures were taken.  The action 
taken (stop or go) at each signal timing presentation was recorded along with whether a given 
encounter was a success (getting through on the yellow light) or a failure (running a red light).   
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Figure 6 shows some results for both simulation and field test trials.  Here we see that in the 
simulator trials when drivers were 2.2 seconds from the intersection that all decided to go and 
were all successful.  When they were 2.8 seconds from the intersection only about 75-80% of 
the drivers decided to go and were all successful.  For the 3.4 second timing drivers only had 
a marginal chance of making the signal if they accelerated, and on the order of 20-40% tried 
to go and were largely unsuccessful (i.e. ran the red light).  In the test track experiment the 
yellow onset time-to-go to the intersection timings (TI) were increased to achieve more 
marginal decision situations.  For the field test data in Figure 6 we see that performance was 
similar to the simulation data for the 2.8 second time interval.  Longer time intervals reduced 
the percentage of drivers going, and reduced the probability of failure given a go.   

Figure 6.  Time and Distance (Kinematic) Relationships for a Signal Light Decision Task 
 
 

The effect of penalty level was also explored in the 
field test experiment.  Results are plotted in Figure 7.  
Here probability of going is plotted as a function of 
the drivers’ subjective probability of failing given a 
go decision.  This data illustrates two effects.  First 
we see that drivers in jeopardy of $4 tickets were less 
willing to go than the $1 ticket group.  Secondly, the 
operating functions of the two groups are almost 
equal, with the high penalty group being slightly 

Figure 7.  Effect of Penalties on Signal Decisions. 
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 more conservative (less willing to go for a given perceived probability of failure).  Thus, the 
level of penalty for failure has a definite effect on decision making, and thus is an important 
element in risk taking and risk acceptance research.  In other words, behavior will vary 
depending on the consequences of performance, and thus tangible and objective penalties are 
an important consideration in experimental designs and measurement paradigms. 

Concluding Remarks 

Performance measurement paradigms for driver behavior are fairly well developed in several 
fields of engineering and behavioral science.  Computational algorithms for various 
performance measures are available and can be easily implemented in driving simulators.  
Implementation in driving simulators will depend on providing for relevant independent and 
dependent variables.  Independent variables need to be controlled through scenario 
development, particularly in tasks involving interaction with other vehicles and pedestrians 
and traffic control devices where timing is critical.  Event based measures are important as 
well as measures of speed and accuracy throughout complex driving scenarios, e.g. ( 38).  
Modeling the kinematic relationships in event based tasks is important to understand 
constraints on driver and vehicle performance.  Modeling driver behavior can be an 
important adjunct to measurements in order to reveal important dependent variables and to 
properly interpret results in various tasks.  Proper control of independent variables and 
appropriate calculation of dependent variables will significantly advance the application of 
driving simulator research, assessment, training and prototyping.  
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