Transfer of Control and Information Needs in Automated Highway System Driving: What was Old is New Again

Chris Schwarz, Daniel V. McGehee, and Timothy L. Brown
The University of Iowa

Introduction

- Two series of seven experiments each were conducted on the Iowa Driving Simulator (IDS) between 1995 and 1998 as part of Automated Highway System (AHS) research program
- Research topics included transfer of control, information needs, gap sizes, automation faults, and automation's effects on normal driving behavior
- A dedicated automation lane was used with speeds of 60, 80, or 95 mph
- Manual traffic drove at 55 mph
- There were no barriers between lanes
- The term string here is the same as a platoon

Conclusions

- Drivers tended to prefer larger gaps and faster speeds
- Drivers strongly preferred taking control of both steering and speed at the same time rather than one before the other
- All drivers liked the AHS and saw safety benefits; but there were age and gender differences
 - In one study older drivers preferred the AHS more than younger ones; in another study the result was reversed
- Traffic flow and network capacity in the AHS lane may be disrupted if there is a large velocity difference between it and the adjacent lane
- One proposed solution is to design multiple AHS lanes with stepped up speeds
- Drivers were able to take control after notification of automation failure but it was harder to steer at the higher speeds
- Driving performance as measured by steering instability, velocity instability and velocity fluctuations seemed to improve after immediate, unplanned, and repeated exposure to the AHS
- However, a control group also experienced improvement, so the root cause is likely to be more complex
- The drivers were not long enough to tell if automated driving was an effective way to delay the onset of fatigue

Transfer of Control from Driver to AHS

24 drivers (25-34) balanced gender. 6 trials each

 - Gap (Inter) Short Long
 - Velocity 65 mph 80 mph 95 mph
- Manual transfers were initiated by a button press
- Automatic transfers initiated as soon as vehicle entered AHS lane
- Driver would become new string (platoon) leader
- A time delay metric was calculated to quantify the effect of a vehicle merging into the AHS lane on the traffic flow behind it
- Possible time delay increased from <1 sec at 65 mph to >6 sec at 95 mph
- There were no collisions in any trials
- Drivers preferred larger gaps and faster speeds
- Driver had to stay in AHS lane longer with increased velocity
- Exit velocity increased as design velocity increased
- Delay time increased from 1.5 sec at 65 mph to 6.8 sec at 95 mph

Transfer of Control from AHS to Driver

36 drivers (25-34), 24 drivers (>=65) balanced gender. 6 trials each

- Velocity 65 mph 80 mph 95 mph
- Gap (Inter) 1 sec 0.25 sec 0.0625 sec
- Density 10 v/m in 20 v/m in
- Drivers preferred larger gaps and faster speeds
- Driver had to stay in AHS lane longer with combination of smallest gap and highest density
- Younger drivers preferred the AHS lane more than older drivers
- Exit velocity increased as design velocity increased
- Delay time increased from 1.5 sec at 65 mph to 6.8 sec at 95 mph

Method of Transfer, Decreasing Gap Size, Automation Failures

30 drivers (25-34), 30 drivers (>=65) balanced gender. 6 trials each

 - W, B Velocity 65 mph 80 mph 95 mph
 - W, B Gap (Inter) Short Long
 - W, B Merge Timing Early Late
 - W, B Failure Steering Speed Both
 - W, B Transfer From Driver-control Situation-cont.

- Younger drivers preferred the 'both' transfer method, followed by steering first, then velocity first
- Older drivers preferred the AHS lane more than younger drivers

Information Needs, Extended Period of Performance

18 drivers (25-34), 18 drivers (>=65)

- 6 control (25-34), 6 control (>=65) : no automation balanced gender. 2 trial each

- After repeated exposure drivers spent less time closing eyes and more time reading magazines
- Time to destination was more useful to drivers than current location, traffic ahead, or past event information
- Drivers would have liked additional information such as maps, weather information, info on gas stations and food, etc.
- Driving performance improved in late collection period for both AHS and control groups, but the control group had more velocity fluctuations than the AHS group
- Drivers strongly preferred the 'both' transfer method, followed by steering first, then velocity first
- Older drivers preferred a longer gap
- Older drivers preferred the AHS lane more than younger drivers

Commuting Performance

1 driver each (25-34), (35-44), (45-54), (55-64), (65-74) balanced gender. 4 trials each

- Response time + Lane change time was 1.86 sec for fully automated transfer – significantly faster than other two methods
- Traffic flow in AHS is estimated to be 4X greater at 65 mph than at 95 mph
- Automation Failure: Drivers who controlled steering had 4X drift across lane (2.2 ft) than those who did not (0.5 ft)
- It was harder to manually steer at 95 mph

...