Vision:

Provide the function and support our customers need to fulfill their research and development goals, while keeping the miniSim an affordable and accessible solution.

Stats:

- Over 80 simulators at 63 sites
- Over 100 user publications, reports, and dissertations published to date
- Over 20 years of development at the University of Iowa
- Supported by team of full-time staff members
- Single PC
 - Cost effective
 - Reliable
- Configurations
 - Desktop
 - Quarter Cab
 - Half-Cab
 - Custom
- Compatible with NADS simulators
 - *NADS researchers use the same tools daily*
 - *NADS development and support staff*
Common tools used across all NADS simulator platforms

- Integrated Scenario Authoring Tool (ISAT) for scenario authoring
- Tile Mosaic Tool (TMT) for map assembly
- nDAQtools for data reduction
Display configurations

3 x 24” LCD

3 x 48” LCD
Hardware configurations

Desktop

Simplified Cab

Quarter Cab
Supported wheel and pedal systems

- ECCI Trackstar 6000
- Fanatec Wheel Base
- CSL Elite Pedals
- Loadcell Brake
- miniSim Steering and Pedal Loaders (half- and quarter-cabs)
Half-Cab Simulators

Projectors and Curved Screens
Half-Cab Simulators

Projectors and Flat Screens

All are single PC
Custom Configurations

- Mobile
- Clinical Trials
- Training
- Ophthalmology Research

All are single PC
Custom Simulators and Cabs

miniSim™

Fits 36 inch Doorway
Installation and Training

On-site assembly Projector installation User training
miniSim™ Integration Features

Network
- Trigger events in simulation
- Control miniSim AutoDriver
- Log data in miniSim
- Control external devices
- UDP over WiFi, LAN, etc

User-Defined Subsystem
- Direct read/write to simulation

Hardware Subsystem
- Handoff control
 - NADS AutoDriver
 - External control
NADS AutoDriver
• 8 behaviors (lane change, merge, exit, etc)
• Control via scenario
• Control via external systems

NADS Virtual World API
• Provides sensor-like data in real-time
 o Geometry
 o Speed limits
 o Scenario vehicles and objects

Hardware Subsystem
• Controls handoff via
 o Scenario trigger
 o External system (UDP)
 o Manual input
ISAT™: Integrated Scenario Authoring Tool

GUI interface
- No scripting required
- Sophisticated event triggering

3 modes
- Edit
- Rehearsal
- Playback
A Tile-Based Approach to Building Road Networks
Includes the following:

>250 tiles
 • Urban
 • Residential
 • Freeway
 • Rural

• Assemble your design
• Export to miniSim
Custom Tile Development

- U.S. and International
 - ✔️ AASHTO
 - ✔️ EU
- Replica or ‘typical’ environments
- Accurate sign fonts and color
- New and aged road markings
- Many source data formats
- Extensive existing libraries
- Support for non-NADS simulators
Wrong-way countermeasures
Customer-supplied data automated feature extraction

Custom Tile Development Service
Compatible Eye-Tracking

Ergoneers
- D-Lab data acquisition
- Dikalbis and Tobii

Smart Eye
- SmartEye Pro
- MAPPS

Eyetracking Inc.
- FOVIO
- EyeWorks
- Tobii
Compatible Motion Systems

D-BOX

Move the World™

(On miniSim™ simplified cab)

SimGear

(SimGear cab shown)

Eleetus

(Eleetus cab shown)
NADS Infotainment System

- Available skins
 - Toyota Entune and Tesla 3
- Multi-platform compatibility
 - Raspberry Pi 3+
 - Android and iOS
 - Windows
- Data acquisition
 - Menu and button status
 - Touch position
 - Operator interface
- Audio playback (MP3 and Internet Radio)
- Map display
- Scenario integration
Tesla Model 3

Infotainment System
Springfield: Anytown, USA

A Virtual Proving Ground for Automated & Connected Vehicles
Built, tested, and ready to go!

Ambient traffic

Diverse environment
- 285 square miles
- 230 miles of roadway
- 178 intersections
- 143 traffic signals
- 1362 signs

Supports many applications
- Automation development
- UI testing
- Distraction
- Outreach, education
NADS Springfield Road Network Option
Video Capture Option: NADS VidCap™

- Synchronized
- Data Overlay
- 4 x Cameras
- Full HD
- AVI, MPEG4
miniSim™ now supports DI-Guy digital humans from VT MÄK.

DI-Guy creates natural-looking smooth behavior for its more than 2,000 motions and transitions.
miniSim Team

Andrew Veit, MS, PE
Director, miniSim
andrew-veit@uiowa.edu
(319)335-4361

Program management, application engineering, design, displays

Shawn Allen, BFA
Technical Lead, Visualization and Graphics
shawn-allen@uiowa.edu
(319)335-4598

Virtual environments, TMT, tile library, ISAT

Oscar Hernandez Murcia PhD, MSc
Software Developer/Engineer
oscar-hernandezmurcia@uiowa.edu
(319)335-0298

miniSim, automation, dynamics, hardware interface

Dylan Stewart, BS
Software Developer/Engineer
dylan-stewart@uiowa.edu
(319)335-4797

miniSim, hardware interface installer configuration

Joe Meidlinger
Program Coordinator, miniSim
joseph-meidlinger@uiowa.edu
(319)335-4302

Production, support admin, system checkout, training videos, shipping

Chris Schwarz, PhD
Director, Engineering and Modeling Research
chris-schwarz@uiowa.edu
(319)335-4642

Intelligent vehicle systems, ADAS models, simulation, dynamics

Dawn Marshall, MS
Research Manager
dawn-marshall@uiowa.edu
(319)335-4774

Vehicle interface evaluation, standard testing protocols, Safer-Sim UTC

Additional Resources